时序预测 | Matlab实现TCN-Transformer锂离子电池健康状态SOH估计

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

锂离子电池作为储能器件在现代社会扮演着至关重要的角色,其健康状态 (SOH) 的准确评估对于保证其安全性和可靠性至关重要。时序预测方法为准确估计电池SOH提供了一种有效途径。本文将介绍基于时间卷积网络 (TCN) 和 Transformer 的深度学习模型,用于实现锂离子电池SOH的精确预测。该模型结合了TCN对时间序列数据的高度敏感性和Transformer对长距离依赖关系的强大捕获能力,并在Matlab平台上进行实现。

引言

随着电动汽车、便携式电子设备和储能系统的快速发展,对锂离子电池的需求不断增长。然而,锂离子电池在使用过程中会不可避免地发生性能退化,其健康状态会逐渐下降。准确评估电池SOH对于保证系统安全、延长电池使用寿命和优化电池管理至关重要。

传统的电池SOH估计方法通常依赖于经验公式或电化学模型,这些方法需要对电池进行复杂的测试和建模,效率较低且精度有限。近年来,深度学习技术在时序预测领域取得了显著进展,为电池SOH估计提供了一种新的解决方案。

基于TCN-Transformer的电池SOH估计模型

1. 时间卷积网络 (TCN)

TCN是一种专门用于处理时间序列数据的深度神经网络。其核心结构是因果卷积,它允许模型仅使用过去的信息来预测未来,避免了数据泄露问题。TCN还引入了膨胀卷积,通过增加感受野,能够捕获更长时间范围内的依赖关系。

2. Transformer

Transformer是一种基于注意力机制的深度神经网络,其在自然语言处理领域取得了巨大成功。Transformer利用自注意力机制来捕捉序列数据之间的长距离依赖关系,并通过多头注意力机制增强了模型的表达能力。

3. TCN-Transformer模型

本文提出的模型结合了TCN和Transformer的优势,能够有效地捕捉时间序列数据中的局部和全局特征。模型结构如下:

  • 输入层:接收电池的测量数据,包括电压、电流、温度等。

  • TCN层:利用因果卷积和膨胀卷积提取时间序列数据的局部特征。

  • Transformer层:利用自注意力机制和多头注意力机制捕捉时间序列数据的全局特征。

  • 全连接层:将提取的特征整合并映射到输出层。

  • 输出层:输出电池的SOH估计值。

Matlab实现

本文利用Matlab平台实现了上述TCN-Transformer模型。Matlab的深度学习工具箱提供了丰富的函数库和工具,方便模型构建、训练和评估。

  • 数据预处理:对电池测量数据进行预处理,包括数据清洗、特征工程和数据归一化。

  • 模型构建:利用Matlab的深度学习工具箱构建TCN-Transformer模型,并设置模型参数。

  • 模型训练:使用训练数据集对模型进行训练,并优化模型参数。

  • 模型评估:使用测试数据集对训练好的模型进行评估,并分析模型性能。

实验结果与分析

实验使用公开的锂离子电池数据集,评估了TCN-Transformer模型的性能。结果表明,该模型能够有效地估计电池SOH,并优于传统的机器学习方法和深度学习方法。模型的预测精度高,误差较小,能够满足实际应用的需求。

结论

本文提出了基于TCN-Transformer的深度学习模型,用于实现锂离子电池SOH的精确预测。该模型结合了TCN对时间序列数据的高度敏感性和Transformer对长距离依赖关系的强大捕获能力,并在Matlab平台上进行实现。实验结果表明,该模型具有良好的性能,为锂离子电池健康状态的评估提供了新的方法和技术支撑。

未来研究方向

  • 探索更复杂的模型结构,进一步提高预测精度。

  • 研究模型的可解释性,分析模型的决策过程。

  • 将模型应用于不同类型和规格的电池,验证其泛化能力。

⛳️ 运行结果

🔗 参考文献

[1] 周航,程泽,弓清瑞,等.基于TCN编码的锂离子电池SOH估计方法[J].湖南大学学报:自然科学版, 2023, 50(4):185-192.

[2] 刘少卿,李帅,苗建国,等.基于TCN-BiGRU的锂离子电池健康状态评估[J].电子测量技术, 2023(023):046.

[3] 周丹华.数据驱动的锂电池健康状态估计方法研究[D].大连工业大学,2021.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
PyTorch是一个开源的深度学习框架,可以用来构建神经网络模型。TCN(Temporal Convolutional Network)是一种用于时间序列预测的神经网络结构,能够捕捉时间序列中的长期依赖关系。Transformer是另一种常用的神经网络结构,通常用于自然语言处理领域,但也适用于时间序列预测任务。 要使用PyTorch实现TCN-Transformer的时间序列预测,首先需要导入PyTorch库。然后可以定义一个包含TCNTransformer层的神经网络模型。TCN可以用来提取时间序列中的特征,而Transformer可以捕捉序列数据之间的关系。 在构建神经网络模型之后,接下来需要准备时间序列数据集。可以使用PyTorch的Dataset和DataLoader类来加载和处理时间序列数据。通常需要将数据划分为训练集和测试集,以便在训练模型时进行验证和评估。 训练神经网络模型时,可以使用PyTorch的优化器和损失函数来最小化预测值与真实值之间的误差。可以选择适当的学习率和训练迭代次数,以确保模型收敛并取得良好的预测效果。 最后,可以使用训练好的TCN-Transformer模型进行时间序列预测。将待预测的时间序列输入到模型中,即可获得对未来趋势的预测结果。通过评估预测结果与实际观测值的差异,可以评估模型的性能和准确度。 总之,使用PyTorch实现TCN-Transformer的时间序列表预测需要构建神经网络模型、处理数据集、训练模型并进行预测,通过这些步骤可以实现对时间序列数据的准确预测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值