中科院1区 | Matlab实现CNN-Transformer时间序列预测

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

时间序列预测是许多科学和工程领域的关键问题,其应用范围涵盖经济预测、气象预报、能源管理等。近年来,深度学习技术,特别是卷积神经网络 (CNN) 和 Transformer,在时间序列预测领域取得了显著进展。本文将介绍一种基于 Matlab 的 CNN-Transformer 模型,用于时间序列预测,并将其应用于实际问题中。该模型充分利用了 CNN 的局部特征提取能力和 Transformer 的全局依赖关系建模能力,在多个时间序列数据集上取得了优异的预测效果,达到了中科院1区期刊发表水平。

1. 概述

时间序列数据是指在特定时间间隔内收集的一系列数据点。预测未来时间点的序列值是许多实际应用中的重要任务。传统的时间序列预测方法,如 ARIMA 和指数平滑,在处理非线性数据和长时依赖关系时往往表现不佳。近年来,深度学习技术,特别是 CNN 和 Transformer,在时间序列预测领域取得了突破性进展。

CNN 擅长提取局部特征,对于时间序列数据中的短期模式和季节性模式具有较好的识别能力。然而,CNN 在捕捉长时依赖关系方面存在局限性。Transformer 架构最初设计用于自然语言处理,其注意力机制能够有效地建模序列数据之间的全局依赖关系。

为了结合 CNN 和 Transformer 的优势,本文提出了一种基于 Matlab 的 CNN-Transformer 模型,用于时间序列预测。该模型将 CNN 用于提取时间序列的局部特征,并利用 Transformer 来建模时间序列的全局依赖关系。

2. 模型架构

本模型架构主要分为三个部分:CNN 模块、Transformer 模块和预测层。

(1) CNN 模块

该模块使用一维卷积层来提取时间序列的局部特征。卷积核大小可以根据具体的时间序列数据特点进行调整,以提取不同时间尺度的特征。

(2) Transformer 模块

该模块利用多头注意力机制来建模时间序列的全局依赖关系。每个注意力头都专注于时间序列的不同部分,从而捕捉不同的长时依赖关系。

(3) 预测层

该模块使用全连接层将 Transformer 模块的输出映射到预测值。预测层可以根据具体应用场景选择不同的激活函数,例如线性激活函数用于回归任务,Sigmoid 激活函数用于分类任务。

3. 实验结果

本文使用多个公开的时间序列数据集来评估模型性能。实验结果表明,该模型在不同时间序列数据集上均取得了优异的预测效果,优于其他基线模型,包括传统的 ARIMA 模型和基于深度学习的 LSTM 模型。

4. 讨论

本文提出的 CNN-Transformer 模型在时间序列预测方面具有以下优势:

  • 结合了 CNN 和 Transformer 的优势: 该模型能够有效地提取时间序列的局部特征和全局依赖关系,从而提高预测精度。

  • 灵活性和可扩展性: 该模型可以根据具体应用场景进行调整,例如改变卷积核大小、注意力头数量等参数。

  • 可解释性: Transformer 中的注意力机制可以帮助我们了解模型对时间序列数据的关注点,从而提高模型的可解释性。

5. 未来方向

未来我们将继续改进该模型,包括:

  • 探索更复杂的注意力机制: 例如,引入多尺度注意力机制来更好地捕捉时间序列的复杂模式。

  • 结合其他深度学习技术: 例如,将该模型与循环神经网络 (RNN) 或图神经网络 (GNN) 相结合,以进一步提高预测性能。

  • 应用于更广泛的应用场景: 例如,将其应用于金融市场预测、医疗诊断、交通流量预测等领域。

结论

本文提出了一种基于 Matlab 的 CNN-Transformer 模型,用于时间序列预测。该模型充分利用了 CNN 和 Transformer 的优势,在多个时间序列数据集上取得了优异的预测效果。该模型具有灵活性和可扩展性,可以应用于各种时间序列预测任务,并具有广阔的应用前景。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 7
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
对于时间序列预测问题,CNN和Bi-Transformer是两种常用的模型。下面是使用PyTorch实现这两种模型的代码示例: 1. 使用CNN进行时间序列预测 ```python import torch import torch.nn as nn class CNN(nn.Module): def __init__(self, input_size, hidden_size, kernel_size): super(CNN, self).__init__() self.conv = nn.Conv1d(in_channels=input_size, out_channels=hidden_size, kernel_size=kernel_size) self.relu = nn.ReLU() self.pool = nn.MaxPool1d(kernel_size=2) def forward(self, x): x = self.conv(x) x = self.relu(x) x = self.pool(x) return x class TimeSeriesCNN(nn.Module): def __init__(self, input_size, hidden_size, kernel_size): super(TimeSeriesCNN, self).__init__() self.cnn1 = CNN(input_size, hidden_size, kernel_size) self.cnn2 = CNN(hidden_size, hidden_size, kernel_size) self.linear = nn.Linear(hidden_size, 1) def forward(self, x): x = self.cnn1(x) x = self.cnn2(x) x = x.flatten(start_dim=1) x = self.linear(x) return x ``` 2. 使用Bi-Transformer进行时间序列预测 ```python import torch import torch.nn as nn class BiTransformer(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_heads, dropout): super(BiTransformer, self).__init__() self.encoder = nn.TransformerEncoder(nn.TransformerEncoderLayer( d_model=input_size, nhead=num_heads, dim_feedforward=hidden_size, dropout=dropout), num_layers=num_layers) self.decoder = nn.TransformerDecoder(nn.TransformerDecoderLayer( d_model=input_size, nhead=num_heads, dim_feedforward=hidden_size, dropout=dropout), num_layers=num_layers) self.linear = nn.Linear(input_size, 1) def forward(self, x): x = self.encoder(x) x = self.decoder(x) x = self.linear(x) return x ``` 以上是使用PyTorch实现CNN和Bi-Transformer进行时间序列预测的代码示例,可以根据具体问题进行修改和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值