✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
光纤激光器作为一种重要的激光器类型,在工业、医疗、科研等领域有着广泛的应用。准确地描述光纤激光器的动力学特性,需要建立相应的速率方程模型。本文将基于四能级模型,利用Matlab软件对光纤激光器的速率方程进行求解,并分析激光输出功率、阈值功率等关键参数。
1. 引言
光纤激光器因其优异的性能,如高效率、高功率、高光束质量等,近年来得到了快速发展。为了更好地理解和设计光纤激光器,需要深入研究其动力学特性,而速率方程是描述激光器工作过程的核心方程组。
2. 四能级模型
四能级模型是描述激光工作原理的常用模型,它假设激光介质具有四个能级,分别是基态(E1)、第一激发态(E2)、第二激发态(E3)和辅助能级(E4)。四个能级之间的跃迁过程可以用以下四个过程来描述:
-
泵浦过程: 激光介质吸收泵浦光,将电子从基态 E1 跃迁到第二激发态 E3。
-
非辐射跃迁: 从 E3 到 E2 的无辐射跃迁,即能量以热能形式释放,电子从 E3 快速跃迁到 E2。
-
激光跃迁: 从 E2 到 E1 的受激辐射跃迁,即电子在受激辐射作用下,从 E2 跃迁到 E1,同时发射出光子,形成激光输出。
-
自发辐射跃迁: 从 E2 到 E1 的自发辐射跃迁,即电子自发地从 E2 跃迁到 E1,同时释放光子,但其与受激辐射相比,方向性和相干性较差。
3. 速率方程
基于四能级模型,我们可以建立光纤激光器的速率方程,它描述了各个能级粒子数随时间的变化规律。设 N1、N2、N3、N4 分别为四个能级的粒子数密度,则速率方程可以写成以下形式:
dN1/dt = -W13*N1 + A21*N2 + B21*N2*I + A41*N4
dN2/dt = W13*N1 - A21*N2 - B21*N2*I - A21*N2
dN3/dt = W13*N1 - W32*N3
dN4/dt = W32*N3 - A41*N4
其中:
-
W13:泵浦跃迁速率
-
W32:非辐射跃迁速率
-
A21:自发辐射跃迁速率
-
B21:受激辐射跃迁速率
-
I:光场强度
4. Matlab 求解
利用 Matlab 软件可以方便地求解速率方程。我们可以使用 ode45 函数来进行数值求解。首先,需要定义速率方程,然后设置初始条件和参数。最后,使用 ode45 函数求解并绘制结果。
5. 分析结果
通过求解速率方程,我们可以得到以下关键参数:
-
激光输出功率: 可以通过求解速率方程得到激光器输出功率随时间变化的曲线。
-
阈值功率: 指激光器开始产生激光输出所需的最低泵浦功率。
-
动态特性: 可以分析激光器在不同泵浦功率下的动态特性,例如响应时间、稳定性等。
6. 结论
基于 Matlab 软件求解光纤激光器的速率方程,可以有效地分析激光器的动力学特性,为光纤激光器设计和优化提供理论依据。未来,可以进一步研究更加复杂的模型,例如考虑光纤结构、温度效应等因素,以更准确地描述光纤激光器的特性。
⛳️ 运行结果
🔗 参考文献
[1] 苏尔慈.基于1560nm泵浦源的掺Tm3+光纤激光器研究[D].北京交通大学,2013.DOI:10.7666/d.Y2428703.
[2] 苏尔慈.基于1560nm泵浦源的掺Tm~(3+)光纤激光器的研究[D].北京交通大学,2013.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类