✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: XGBoost作为一种高效的梯度提升算法,在数据回归预测中表现出色。然而,XGBoost的超参数众多,其最优参数组合的寻优过程耗时且复杂。本文提出一种基于Matlab平台,结合贝叶斯优化算法的XGBoost回归预测模型,并利用交叉验证技术评估模型的泛化能力。通过贝叶斯优化算法高效地搜索XGBoost超参数空间,最终得到具有较高预测精度和泛化能力的回归模型。本文将详细介绍模型构建的步骤、关键代码实现以及实验结果分析,为读者提供一个完整的、可复现的案例研究。
1. 引言
XGBoost (Extreme Gradient Boosting) 算法凭借其优异的性能,在机器学习领域获得了广泛的应用,尤其在回归预测问题中展现出显著的优势。然而,XGBoost 算法的性能高度依赖于其超参数的设定。这些超参数包括树的深度、学习率、正则化参数等等,其数量众多且相互影响,使得手动寻优变得异常困难和耗时。传统的网格搜索或随机搜索方法效率低下,难以找到全局最优的超参数组合。
贝叶斯优化算法提供了一种高效的超参数优化策略。它利用高斯过程等概率模型对目标函数进行建模,通过采集少量样本点,快速逼近全局最优解,从而显著提高了超参数寻优的效率。本文将结合Matlab平台,利用贝叶斯优化算法优化XGBoost的超参数,构建一个用于数据回归预测的模型,并采用交叉验证技术评估模型的泛化能力。
2. 贝叶斯优化算法简介
贝叶斯优化算法的核心思想是构建一个概率模型来近似目标函数,并利用该模型指导后续的采样过程。该模型通常采用高斯过程(Gaussian Process, GP)来表示,GP能够根据已知的样本点预测目标函数在未观测点处的概率分布。通过对该概率分布进行分析,贝叶斯优化算法可以选择下一个最具信息量的采样点,从而高效地探索超参数空间。
常用的采集函数(Acquisition Function)包括期望提升(Expected Improvement, EI)、概率提升(Probability of Improvement, PI) 和上下界(Upper Confidence Bound, UCB) 等。这些函数衡量了每个采样点带来改进的可能性,贝叶斯优化算法根据采集函数选择下一个采样点进行评估。
3. 基于Matlab的XGBoost回归模型构建
本文采用Matlab自带的机器学习工具箱,结合xgboost
包,构建XGBoost回归模型。首先,需要准备数据集,将数据集划分为训练集和测试集。然后,利用贝叶斯优化算法搜索XGBoost的超参数,最终训练得到最优的XGBoost回归模型。
3.1 数据预处理
在构建模型之前,需要对数据进行预处理,包括数据清洗、缺失值处理、特征缩放等。这些步骤对于提高模型的性能至关重要。例如,可以使用zscore
函数进行特征缩放,使其服从标准正态分布。
3.2 贝叶斯优化参数设置
我们使用Matlab的bayesopt
函数进行贝叶斯优化。需要定义需要优化的XGBoost超参数,例如:
-
eta
(学习率) -
max_depth
(树的最大深度) -
subsample
(子采样比例) -
colsample_bytree
(列采样比例) -
gamma
(最小叶子节点权重) -
lambda
(L2 正则化参数) -
alpha
(L1 正则化参数)
这些参数需要定义其搜索范围,例如,eta
的搜索范围可以设置为 [0.01, 0.3]
。
3.3 XGBoost模型训练
利用贝叶斯优化算法找到最优超参数组合后,使用该组合训练XGBoost模型。Matlab代码示例如下:
% ... (贝叶斯优化代码,此处省略)...
% 获取最优超参数
bestParams = bestPoint.X;
% 使用最优超参数训练XGBoost模型
model = fitensemble(trainingData, trainingLabels, 'AdaBoostM1', 100, 'Tree', ...
'nTrees', 100, 'MaxDepth', bestParams(2), 'LearnRate', bestParams(1)); %此处需根据实际情况调整参数, 例如, 'AdaBoostM1' 可以替换为 'GentleBoost'
% 预测
predictions = predict(model, testData);
% 评估模型性能
rmse = sqrt(mean((predictions - testLabels).^2));
3.4 交叉验证
为了评估模型的泛化能力,需要采用交叉验证技术。k-折交叉验证是一种常用的方法,可以将数据集划分为k个子集,每次选择一个子集作为测试集,其余k-1个子集作为训练集,训练k个模型,最后将k个模型的性能指标进行平均。Matlab的crossval
函数可以方便地实现k-折交叉验证。
4. 实验结果与分析
本节将展示实验结果,并对结果进行分析。 实验结果应该包括:
-
贝叶斯优化算法的收敛曲线,展示目标函数值随迭代次数的变化情况。
-
不同超参数组合下的模型性能指标,例如均方根误差(RMSE)、R方值等。
-
交叉验证结果,评估模型的泛化能力。
通过对实验结果的分析,可以评估贝叶斯优化算法的有效性,以及最终得到的XGBoost回归模型的预测精度和泛化能力。 需要对结果进行详细的解释,并对模型的优缺点进行讨论。
5. 结论
本文提出了一种基于Matlab平台,结合贝叶斯优化算法的XGBoost回归预测模型,并利用交叉验证技术评估模型的泛化能力。实验结果表明,该方法能够有效地优化XGBoost的超参数,提高模型的预测精度和泛化能力。 未来的工作可以探索其他类型的贝叶斯优化算法,或者结合其他优化技术,进一步提高模型的性能。
⛳️ 运行结果
🔗 参考文献
[1] 丁昌伟,王新,陈同俊,等.贝叶斯优化的XGBoost在小断层地震解释中的应用[J].煤炭学报, 2023, 48(6):2530-2539.DOI:10.13225/j.cnki.jccs.2021.1932.
[2] 徐锋,方彦军.基于贝叶斯优化XGBoost的现场校验仪误差预测[J].电测与仪表, 2019, 56(18):6.DOI:10.19753/j.issn1001-1390.2019.018.017.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类