✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
随着数字图像在信息传播、存储等方面的广泛应用,图像安全问题日益重要。基于混沌系统和 DNA 编码的图像加密技术结合了混沌系统的良好随机特性和 DNA 编码的复杂运算规则,为彩色数字图像提供了一种有效的加密保护手段。对其解密过程以及抗噪声、抗裁剪性能的分析,有助于评估该加密方案的实用性和安全性。
二、基于混沌系统和 DNA 编码的彩色数字图像加密
三、解密过程
- 获取密钥序列
:使用与加密时相同的混沌系统和初始值,重新生成混沌密钥序列。
- 逆运算
:对加密后的图像进行与加密过程相反的操作。先将加密图像的像素值转换为 DNA 序列,再与混沌密钥序列进行逆运算(如逆异或运算、逆加法运算等)。
- 恢复原始图像
:将逆运算后的 DNA 序列转换回像素值,合并三个颜色通道的分量图像,得到解密后的原始彩色数字图像。
四、抗噪声性能分析
- 噪声添加
:在加密图像中添加不同类型和强度的噪声,如高斯噪声、椒盐噪声等。以高斯噪声为例,通过设置均值和方差来控制噪声的强度。
- 解密测试
:对添加噪声后的加密图像进行解密操作,得到解密后的图像。
- 性能评估指标
:使用峰值信噪比(PSNR)、结构相似性指数(SSIM)等指标来评估解密图像与原始图像的相似程度。PSNR 值越高、SSIM 值越接近 1,说明抗噪声性能越好。
五、抗裁剪性能分析
- 裁剪操作
:对加密图像进行不同比例和位置的裁剪,模拟图像在传输或存储过程中可能受到的损坏。
- 解密尝试
:对裁剪后的加密图像进行解密操作,观察能否恢复出原始图像的部分信息。
- 评估方法
:通过主观视觉评估和解密图像的信息熵、边缘保留程度等客观指标来分析抗裁剪性能。信息熵越大,表示图像中包含的信息量越多;边缘保留程度越高,说明图像的结构信息保留得越好,抗裁剪性能也就越好。
六、结论
基于混沌系统和 DNA 编码的彩色数字图像加密方案在加密和解密过程中表现出一定的优势。通过抗噪声和抗裁剪性能分析可知,该方案在一定程度上能够抵御噪声干扰和图像裁剪带来的影响,但也存在一些局限性,如在强噪声或大比例裁剪情况下,解密图像的质量会有所下降。未来的研究可以进一步优化加密算法,提高其在复杂环境下的安全性和鲁棒性。
以上内容为基于混沌系统和 DNA 编码的彩色数字图像加密、解密、抗噪声性能分析以及抗裁剪性能分析提供了一个较为全面的框架,你可以根据实际需求对具体内容进行调整和深入研究
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇