✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要:生鲜农产品配送路径规划问题是复杂的NP难问题,为提高配送路径规划效率,有效指导生鲜企业的配送路径规划,文章分析了生鲜配送及带时间窗的车辆路径问题的特点,考虑时间窗约束构建了配送路径最短的数学模型。在传统遗传算法的基础上,引入大规模邻域搜索算法改进局部搜索操作,提出一种混合遗传算法,并进行算例仿真。经计算,算例的最优配送路径包括5条线路,最短配送距离为75.9994 km,优于传统遗传算法所得最短路径。验证结果表明:改进的遗传算法能解决有时间窗的车辆路径问题,所得方案较优。
关键词:生鲜配送、改进遗传算法、时间窗、路径优化
1. 研究背景
随着我国生鲜农产品市场的蓬勃发展,对产品的需求量和品质要求都在持续上升。然而,在这一过程中,我们也逐渐发现农副产品流通中的一些问题,特别是物流基础设施和信息化程度的不足。生鲜农副产品种类繁多,保鲜需求各异,储存时间短,且消费者需求分布广泛,路径网络错综复杂,这使得物流配送路径的优化变得尤为重要。
随着消费者对生鲜农副产品选择性、新鲜度等品质要求的提升,对配送时间的要求也愈发严格,这无疑为路径优化带来了新的挑战。配送作为生鲜农产品流通中的关键环节,其路径设计的科学性和合理性对消费者体验、企业经济效益以及社会影响都起着决定性作用。
因此,优化配送车辆路径不仅能提高配送效率,降低配送成本,确保产品准时送达,提升消费者满意度和企业经济效益,还能减少车辆使用,缓解城市拥堵,降低汽车噪声和尾气排放,从而实现对生态环境的保护。
生鲜农产品配送车辆路径优化(VRP)问题属于带时间窗的车辆路径(VRPTW)问题,该问题是由Pullen等[1](1967),Knight等[2](1968)考虑提供服务间隔时间约束时提出的。我国对该类问题的研究主要集中在模型构建和求解方法两个方向。2014年,杨磊等以顾客满意度为目标函数,以客户的时间要求为约束条件,建立带时间窗口的鲜活农产品配送模型进行配送车辆路径优化
研究[3]。2016年,葛显龙等考虑路程等因素,以物流企业的最小成本(车辆成本和货损成本)为目标函数,建立了带时间窗口约束的优化模型,并给出最优车辆路径[4]。2017年,朱莉等以最短车辆运行时间为最优目标提出了一种带时间窗口的紧急救援路线优化模型,解决了带时间窗的跨区救援线路优化问题[5]。2019年,冀巨海等以配送成本最小为目标函数,建立了基于软硬时间窗口限制和取送两种方式相结合的配送车辆路径优化模型[6]。2017年,郭咏梅等针对突发事件中的应急物流VRPTW问题,提出一种蚂蚁算法和人工鱼群算法相结合的混合算法[7]。2018年,邓红星等构建了公路零担物流配送路径优化模型,并提出置换算法求解得出最优方案[8]。2020年,赵志学把交通拥堵情况引入VRPTW数学问题,构建了配送车辆路径优化的数学模型,并采用GA进行问题求解。2022年,王阔和郝福珍以配送总路程最短为目标构建VRPTW问题的约束模型,用改进后的PGSA算法,达到更好的求解结果[9]。2023年,李建华等依据生鲜农产品物流的构成,引入Milk-Run循环取货模式,综合考虑装载率、出车数量、疲劳驾驶、客户时间等因素构建多目标VRPTW模型,通过仿真实验证明了所提出的方法可以为企业的物流决策提供参考[10]。
生鲜农产品配送车辆路径优化(VRP)问题,尤其是带时间窗的车辆路径(VRPTW)问题,是物流领域中的一个热点研究方向。我国学者在生鲜农产品配送车辆路径优化问题上取得了显著的进展。这些研究不仅关注了基本的路径优化问题,还逐渐将实际问题中的复杂因素纳入考虑,如客户的时间要求、物流成本、运输时间、交通拥堵等。在求解方法上,学者们也进行了多种尝试和创新。从早期的数学模型和仿真实验,到近年来的智能算法,如蚂蚁算法、置换算法、GA和PGSA算法等,这些算法在求解VRPTW问题上展现出了良好的性能。特别是近年来,随着大数据、人工智能等技术的快速发展,生鲜农产品配送车辆路径优化问题的研究也迎来了新的机遇。
2. 配送车辆路径优化模型
文章以生鲜农产品配送路径优化为研究对象,以配送路径最短构造优化模型,寻找最优配送方案。
2.1 模型假设
(1)假设存在一个配送中心和多个客户,配送车辆充足;
(2)配送车辆匀速行驶且燃料充足,无故障;
(3)配送中心货物充足,能满足多个客户需求;
(4)所有货品运输储存温度一致;
(5)车辆的载重量相同;
(6)车辆服务完最后一个顾客后返回配送中心。
1. 遗传算法
3.1 标准遗传算法
3.1.1 编码
染色体编码是利用遗传算法求解问题时首先需要考虑的部分,编码的好坏直接影响计算的复杂度和各算子的性能。利用遗传算法求解车辆路径问题时通常采用自然数编码。在需进行配送的客户点数量为n,问题最大可使用车辆数为k时,设定染色体的长度为n+k-1,染色体表达形式即为(1,2,…n,n+1,……,n+k-2,n+k-1)。
3.1.2 适应度函数
本模型适应度函数是求取车辆路径最短,由于存在容量约束和时间窗约束,因此增加惩罚函数来进行求解:
f(s)=c(s)+αq(s)+βw(s)
式中,c(s)表示原本的目标函数,q(s)表示当前解违反容量约束之和,w(s)表示当前解违反时间窗约束之和。α、β为常数系数,因容量约束比较容易满足而满足时间窗约束较为困难,设定α为一较小常数,β为一比较大的常数。带时间窗的车辆路径问题要求求解满足约束条件下的最短路程,因此f(s)的解越小,适应度越高。
3.1.3 构造初始种群
遗传算法的一系列操作都是基于种群进行的,因此在进行遗传操作前需根据问题构造初始解。本文的操作为:在客户点集合中随机选出一客户点i作为路径上的第一站,按照顺序依次判断客户点i+1、i+2、…、n、1、2、…、i-1,将集合中的点全部添加至路径。具体判断方法为:
确定该点是否满足当前路径的容量约束,如果满足则将该点添加至路径,不满足则保存当前路径并更新一条新路径将该点作为新路径的第一站。如满足容量约束,判断该点能否在满足自身以及路径上相邻两点的左时间窗的情况下插至现有路径两点之间,如ad <ai<ae,则客户点i可以加至d、e两点之间。
如满足容量约束,且该点不能插入当前路径相邻两点之间,则将该点插至当前路径末位。
通过以上方法判断整个集合,可得到初始种群中的一个初始解,根据设定的种群大小重复操作,可得到初始种群。
3.1.4 选择算子
根据个体的适应度,按照一定的规则或方法,从某一代群体中选择出一些优良的个体遗传到下一代群体中。
其中,轮盘赌选择法是遗传算法中最早提出的一种选择方法,因为它简单实用,所以被广泛采用。它是一种基于比例的选择,利用各个个体适应度所占比例的大小来决定其子孙保留的可能性。个体适应度越大,则其被选择的机会也越大:反之亦然。为了选择交叉个体,需要进行多轮选择。每一轮产生一个[0,1]内的均匀随机数,将该随机数作为选择指针来确定被选个体。
3.1.5 交叉算子
将群体中选中的各个个体随机搭配,对每一对个体,以某一概率(交叉概率)交换它们之间的部分染色体。通过交叉,遗传算法的搜索能力得以飞跃提高。
本文采用顺序交叉,即配对的两个父代个体随机选择起始交叉位置和结束交叉位置,将此区域内父代染色。体数串1的基因复制给子代染色体数串1至相同位置,将父代染色体数串2对照子代染色体数串1缺少基因,按顺序填入剩余空位,形成子代染色体数串1,按照同样方式的可得另一子代染色体数串2。
如有5个配送客户点,最多可使用2辆车进行配送任务,选择第2位为起始交叉位置,第4位结束交叉位置。如图所示,可得到子代染色体数串1。
⛳️ 运行结果
🔗 参考文献
[1]高珊珊.改进遗传算法在多配送中心VRPTW中的应用[D].兰州财经大学[2024-09-28].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类