✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
多智能体系统(MAS)的协同控制是当前人工智能与控制领域的研究热点,其在机器人集群、无人机编队、交通流控制等方面具有广泛的应用前景。本文将重点探讨多智能体系统的协同群集运动控制问题,特别关注基于领导者-追随者模型的控制策略,并结合Matlab代码进行详细阐述与分析。
传统的群集运动控制方法通常依赖于全局信息或复杂的计算,难以应用于大规模、动态变化的环境中。而领导者-追随者模型提供了一种相对简单且有效的解决方案。该模型将多智能体系统划分为领导者和追随者两类,领导者负责规划全局路径和运动策略,追随者则根据领导者和邻近追随者的信息调整自身运动,实现群体的一致性和目标达成。这种分层结构降低了系统的计算复杂度,提高了系统的鲁棒性和可扩展性。
本文所讨论的领导者-追随者模型基于虚拟力场法和人工势场法。领导者智能体根据预设的轨迹或目标点进行运动,而追随者智能体则受到两种力的作用:吸引力(来自领导者和目标点)和排斥力(来自其他追随者,避免碰撞)。吸引力模拟了追随者对领导者和目标点的跟随行为,排斥力则确保追随者之间保持安全距离,避免碰撞和拥堵。
具体的控制算法如下:
1. 领导者控制: 领导者的运动轨迹可以预先设定,例如一条直线或曲线。其控制算法可以简单地表示为:
v_leader = k_v * (target_position - leader_position);
leader_position = leader_position + v_leader * dt;
其中,v_leader
为领导者的速度向量,k_v
为速度增益系数,target_position
为目标位置,leader_position
为领导者的当前位置,dt
为时间步长。
2. 追随者控制: 追随者的控制算法更加复杂,需要考虑领导者和邻近追随者的影响。针对每个追随者 i
,其控制算法可以表示为
F_attraction_leader = k_a * (leader_position - follower_i_position);
F_repulsion_followers = sum(k_r * (follower_i_position - follower_j_position) ./ norm(follower_i_position - follower_j_position)^3, j~=i & norm(follower_i_position - follower_j_position) < d_safe);
F_total = F_attraction_leader + F_repulsion_followers;
v_follower_i = k_v * F_total;
follower_i_position = follower_i_position + v_follower_i * dt;
其中,F_attraction_leader
为来自领导者的吸引力,k_a
为吸引力增益系数,F_repulsion_followers
为来自其他追随者的排斥力,k_r
为排斥力增益系数,d_safe
为安全距离,F_total
为合力,v_follower_i
为追随者的速度向量。 注意,排斥力仅在其他追随者进入安全距离内时才会产生作用。 norm()
函数计算向量的模。
end
这段代码提供了一个简单的领导者-追随者模型的实现。实际应用中,需要根据具体任务和环境对参数进行调整,并考虑更复杂的因素,例如障碍物规避、通信延迟等。
总而言之,基于领导者-追随者模型的多智能体协同群集运动控制方法具有简单、高效、鲁棒性强的特点,在许多实际应用中具有显著优势。 本文提供的Matlab代码仅为一个入门级的示例,读者可以根据实际需求进行修改和扩展,以实现更复杂和强大的群集运动控制系统。 未来的研究方向可以包括更高级的路径规划算法、更鲁棒的碰撞避免策略以及在动态环境下的适应性控制等。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类