✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
多智能体系统(MAS)因其在机器人技术、无人机编队、交通流控制等领域的广泛应用而备受关注。蜂拥控制作为多智能体系统中的一个重要研究方向,旨在设计有效的算法,使一群智能体能够自主地协同完成特定任务,例如集体移动、形状形成和目标包围等。本文将重点探讨两种常见的蜂拥控制策略:基于单个领导者-跟随者模式和基于多个领导者的模式,并结合Matlab代码进行仿真分析,以深入理解其原理和性能差异。
一、 单个领导者-跟随者模式
单个领导者-跟随者模式是一种较为简单的蜂拥控制策略。其中,一个智能体被指定为领导者,其余智能体作为跟随者,根据领导者的运动轨迹进行调整,从而实现群体一致性。这种模式的优点在于实现简单、计算量小,容易理解和实现。然而,其缺点也显而易见:领导者的失效将导致整个系统的崩溃;领导者需要具有较高的计算能力和可靠性;难以应对复杂的环境和任务。
在该模式下,跟随者的控制策略通常基于对领导者信息的感知和反馈。常见的算法包括:
-
基于距离和角度的跟随: 跟随者根据自身与领导者的距离和角度信息,调整自身的速度和方向,以保持与领导者一定的距离和相对角度。
-
基于势场的跟随: 跟随者在虚拟势场的作用下,趋向于领导者,并避开障碍物。
Matlab代码示例:
wer_pos(i,:) - leader_pos);
direction = (leader_pos - follower_pos(i,:)) / distance;
follower_pos(i,:) = follower_pos(i,:) + direction * dt * 2; % 2为速度系数
end
% 绘制智能体位置
plot(leader_pos(1), leader_pos(2), 'ro', 'MarkerSize', 10);
hold on;
plot(follower_pos(:,1), follower_pos(:,2), 'bo');
hold off;
axis equal;
title(['时间步:' num2str(t)]);
pause(0.1);
end
这段代码展示了简单的基于距离的跟随策略,读者可以根据实际需求修改跟随算法和领导者的运动轨迹。
二、 多个领导者模式
多个领导者模式克服了单个领导者模式的单点失效问题,并能更好地应对复杂环境和任务。在该模式下,多个智能体被指定为领导者,它们各自规划自己的运动轨迹,而跟随者根据多个领导者的信息进行协调运动。
多个领导者的协调机制是该模式的关键。常用的方法包括:
-
加权平均法: 跟随者根据与每个领导者的距离或其他指标计算权重,并根据权重对领导者的信息进行加权平均,确定自身的目标位置和速度。
-
虚拟力法: 跟随者受到来自多个领导者的虚拟引力作用,并避开障碍物和彼此碰撞。
-
基于一致性协议的算法: 利用分布式一致性算法,例如平均一致性算法或最大一致性算法,实现多个领导者和跟随者之间的协调。
Matlab代码示例 (基于加权平均法):
% ... (定义参数,类似于单个领导者模式) ...
% 定义多个领导者位置
leader_pos = rand(3, 2) * 20; % 3个领导者
% 迭代模拟
for t = 1:100
% 领导者运动 (示例:随机运动)
leader_pos = leader_pos + randn(3, 2) * dt;
% 跟随者运动 (基于加权平均的跟随)
for i = 1:num_agents
weights = 1./(vecnorm(leader_pos - follower_pos(i,:), 2, 2) + 1e-6); % 计算权重,避免除零
weights = weights / sum(weights); % 归一化权重
target_pos = sum(leader_pos .* weights, 1);
direction = (target_pos - follower_pos(i,:)) / norm(target_pos - follower_pos(i,:));
follower_pos(i,:) = follower_pos(i,:) + direction * dt * 2;
end
% ... (绘制智能体位置,类似于单个领导者模式) ...
end
这段代码展示了基于加权平均法的多个领导者模式,权重根据跟随者与各个领导者的距离计算。
三、 结论
本文探讨了基于单个领导者-跟随者模式和多个领导者的两种多智能体蜂拥控制策略,并提供了相应的Matlab代码示例。单个领导者模式简单易实现,但存在单点失效问题;多个领导者模式更加鲁棒,但算法设计和参数调优更加复杂。选择哪种模式取决于具体应用场景的需求和约束条件。未来的研究可以集中在更复杂的场景下,例如考虑障碍物规避、通信约束以及更高级的群体行为控制等方面。 更高级的算法,例如基于人工势场法,模糊逻辑控制,以及基于深度强化学习的控制算法,也值得进一步探索,以提升多智能体蜂拥控制的性能和适应性。
⛳️ 运行结果
🔗 参考文献
[1] 周立海,杨洪勇.基于虚拟领导者的多智能体蜂拥行为研究[J].计算机仿真, 2012, 29(6):5.DOI:10.3969/j.issn.1006-9348.2012.06.004.
[2] 陈世明,化俞新,祝振敏,等.邻域交互结构优化的多智能体快速蜂拥控制算法[J].自动化学报, 2015, 41(12):8.DOI:10.16383/j.aas.2015.c150254.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类