✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 图像融合技术旨在将多幅具有互补信息的图像整合为一幅信息更丰富、质量更高的图像。本文研究了一种基于脉冲耦合神经网络(Pulse Coupled Neural Network, PCNN)和非下采样Contourlet变换(Non-Subsampled Contourlet Transform, NSCT)的图像融合算法。该算法利用NSCT的多尺度、多方向特性对源图像进行分解,提取不同尺度、不同方向的特征信息;然后,利用PCNN的局部联结特性和自适应学习能力对NSCT变换后的系数进行融合规则设计,最终通过NSCT逆变换得到融合图像。本文详细阐述了该算法的原理、流程,并利用Matlab进行了仿真实验,结果表明该算法在主观视觉效果和客观评价指标上均取得了较好的效果,优于传统的基于小波变换和Contourlet变换的融合方法。
关键词: 图像融合;脉冲耦合神经网络(PCNN);非下采样Contourlet变换(NSCT);Matlab;多尺度;多方向
1. 引言
随着传感器技术和图像采集技术的不断发展,获取多源图像变得越来越容易。然而,单幅图像往往难以完整地表达目标场景的信息,而多幅图像却可能包含互补信息。图像融合技术应运而生,其目的是将多幅具有互补信息的图像整合为一幅信息更丰富、质量更高的图像,从而提高图像的应用价值。图像融合广泛应用于医学影像、遥感图像处理、军事侦察等领域。
传统的图像融合方法主要基于小波变换(Wavelet Transform, WT)等单一变换,其局限性在于难以有效捕捉图像的边缘和纹理信息。近年来,Contourlet变换因其优越的多尺度、多方向特性受到广泛关注,能够更好地表示图像的几何结构信息。然而,传统的Contourlet变换存在下采样操作,容易丢失图像细节信息。非下采样Contourlet变换(NSCT)克服了这一缺点,在保持多尺度、多方向特性的同时避免了信息丢失,成为图像融合领域的研究热点。
脉冲耦合神经网络(PCNN)是一种具有局部连接特性和自适应学习能力的神经网络模型,其输出脉冲序列能够反映图像的特征信息。将PCNN应用于图像融合,可以充分利用其自适应性和并行性,提高融合效果。本文提出了一种基于PCNN和NSCT的图像融合算法,该算法有效地结合了NSCT的多尺度、多方向特性和PCNN的自适应学习能力,在客观评价指标和主观视觉效果方面取得了显著提升。
2. NSCT变换及PCNN模型
2.1 非下采样Contourlet变换(NSCT)
NSCT是一种非下采样的多尺度几何分析方法,它能够对图像进行多尺度、多方向分解,有效地表示图像的边缘和纹理信息。NSCT通过循环滤波器组和方向滤波器组实现对图像的多尺度、多方向分解。与传统的Contourlet变换相比,NSCT避免了下采样操作,有效地防止了图像信息的丢失,提高了融合精度。
2.2 脉冲耦合神经网络(PCNN)
PCNN是一种模拟生物神经元脉冲放电过程的神经网络模型,其核心思想是模拟神经元之间的脉冲耦合和相互作用。PCNN模型具有局部连接特性和自适应学习能力,其输出脉冲序列可以反映图像的特征信息。本文采用改进的PCNN模型,通过调整模型参数,使其更好地适应图像融合任务。
3. 基于PCCT+NSCT的图像融合算法
本文提出的基于PCNN+NSCT的图像融合算法流程如下:
步骤1:NSCT分解: 对两幅源图像分别进行NSCT分解,得到不同尺度和方向的子带系数。
步骤2:PCNN融合规则: 对于每个尺度和方向的子带系数,采用改进的PCNN模型进行融合。具体步骤如下:
(1) 将对应尺度和方向的两个子带系数分别作为PCNN的输入。
(2) 调整PCNN模型参数,使其能够适应不同尺度和方向的子带系数特征。
(3) 根据PCNN的输出脉冲序列,设计融合规则。例如,可以采用选择最大值或加权平均等方法进行融合。
(4) 重复步骤(1)-(3)直到所有尺度和方向的子带系数都完成融合。
步骤3:NSCT逆变换: 对融合后的子带系数进行NSCT逆变换,得到最终的融合图像。
4. Matlab实现及实验结果
本文利用Matlab软件实现了基于PCNN+NSCT的图像融合算法。实验选取了多组不同类型的图像进行测试,并与基于小波变换和Contourlet变换的传统融合方法进行了对比。
客观评价指标采用峰值信噪比(PSNR)、结构相似性(SSIM)和边缘信息熵等进行评估。实验结果表明,本文提出的算法在PSNR、SSIM和边缘信息熵等方面均取得了较好的效果,优于传统的融合方法。同时,主观视觉效果也显示出该算法能够更好地保留图像的细节信息和边缘信息,融合图像的视觉质量更高。
实验中,需要仔细调整PCNN模型的参数,例如连接强度、阈值等,以达到最佳的融合效果。参数的选取可以根据经验或通过优化算法进行确定。
5. 结论与展望
本文提出了一种基于PCNN+NSCT的图像融合算法,并利用Matlab进行了仿真实验。实验结果表明,该算法能够有效地融合多源图像,在主观视觉效果和客观评价指标上均取得了较好的效果。该算法结合了NSCT的多尺度、多方向特性和PCNN的自适应学习能力,有效地提高了图像融合的质量。
未来的研究方向可以集中在以下几个方面:
(1) 探索更有效的PCNN融合规则,例如基于深度学习的融合规则。
(2) 研究不同类型图像的PCNN参数自适应调整机制。
(3) 将该算法应用于具体的应用场景,例如医学影像融合、遥感图像融合等。
⛳️ 运行结果
🔗 参考文献
[1]温黎茗,彭力,徐红.基于NSCT和PCNN的遥感图像融合算法[J].计算机工程, 2012, 38(11):196-198.DOI:10.3969/j.issn.1000-3428.2012.11.060.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类