✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
牛顿环干涉是薄膜干涉现象的一种典型体现,它以其简洁的实验装置和清晰的干涉条纹而闻名,是光学实验教学和科学研究中重要的基础内容。本文将深入探讨牛顿环干涉的理论基础,并结合Matlab编程,实现其动态仿真,展示干涉条纹随实验参数变化的动态过程,加深对牛顿环干涉现象的理解。
一、牛顿环干涉的理论基础
牛顿环是由一块平凸透镜和平板玻璃之间形成的空气薄膜产生的干涉现象。当单色平行光垂直入射到该系统时,从空气薄膜上下表面反射的两束光波发生干涉。由于薄膜厚度在透镜中心处为零,并随着径向距离的增加而逐渐增大,因此形成一系列明暗相间的同心圆环,即牛顿环。
设平凸透镜的曲率半径为R,薄膜在距中心r处的厚度为t,根据几何关系,可得近似关系:
t ≈ r²/2R
根据薄膜干涉的条件,当两束反射光的光程差满足以下条件时,产生干涉加强(亮环):
2t + λ/2 = mλ (m = 0, 1, 2, ...)
其中,λ为入射光的波长,m为干涉级次。将t的表达式代入上式,可得亮环的半径r_m:
r_m = √(mλR)
类似地,当两束反射光的光程差满足以下条件时,产生干涉减弱(暗环):
2t = mλ (m = 0, 1, 2, ...)
可得暗环的半径r_m:
r_m = √(mλR) (m=0对应中心暗斑)
二、Matlab仿真实现
利用Matlab强大的数值计算和图形处理能力,可以对牛顿环干涉进行动态仿真。仿真程序需要考虑以下几个方面:
-
参数设置: 程序需要用户输入或预设参数,包括入射光的波长λ、透镜的曲率半径R以及观察区域的尺寸。
-
光程差计算: 根据公式计算不同位置的光程差,并判断该位置是亮环还是暗环。可以采用矩阵运算,提高计算效率。
-
图像绘制: 根据计算结果,使用Matlab的图像处理函数绘制牛顿环的干涉条纹图。可以使用
imagesc
函数或contour
函数来显示干涉图样。 颜色映射可以根据干涉级次或光强来选择,例如使用jet
、hot
或自定义颜色映射。 -
动态效果实现: 通过改变参数,例如波长λ或曲率半径R,实时更新干涉条纹图,从而实现动态仿真效果。可以使用
uicontrol
函数创建滑块或文本框,让用户交互式地改变参数。
三、程序代码示例 (简化版)
以下是一个简化的Matlab代码示例,展示了牛顿环干涉条纹的静态绘制:
matlab
lambda = 632.8e-9; % 波长 (nm)
R = 1; % 曲率半径 (m)
N = 500; % 网格点数
r = linspace(0, 0.01, N); % 径向坐标
theta = linspace(0, 2*pi, N); % 角坐标
[R, Theta] = meshgrid(r, theta);
t = R.^2 / (2*R);
delta = 2*t;
I = abs(cos(2*pi*delta/lambda)); % 光强
polar(Theta, R, I); % 绘制极坐标图
title('牛顿环干涉图样');
完整的动态仿真程序需要加入用户界面交互和参数实时更新等功能,代码会更为复杂。
四、结果分析与讨论
通过Matlab仿真,我们可以直观地观察到牛顿环干涉条纹的形态,以及不同参数对条纹分布的影响。例如,增加波长λ会使条纹间距增大,增加曲率半径R会使条纹间距减小。 仿真结果与理论分析结果相符,验证了理论模型的正确性。
五、结论
本文通过对牛顿环干涉理论的深入分析,并结合Matlab编程实现了其动态仿真。仿真程序能够清晰地展现牛顿环干涉条纹的形成过程,以及不同参数对条纹分布的影响,有效地提高了对牛顿环干涉现象的理解。 未来可以进一步完善该程序,加入更复杂的模型,例如考虑光波的偏振特性和多层膜干涉等因素,从而构建更精确、更全面的牛顿环干涉仿真模型。 这对于光学教学和科研工作都具有重要的意义。
⛳️ 运行结果
🔗 参考文献
[1]王蕴杰.基于Matlab的牛顿环白光干涉实验仿真[J].大学物理实验, 2014, 27(4):3.DOI:10.3969/j.issn.1007-2934.2014.04.028.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类