✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 本文针对机动目标跟踪中存在的非线性、非高斯和多传感器数据融合等难题,提出了一种基于分布式混合共识的平方根立方正交信息滤波器 (Distributed Hybrid Consensus Square-Root Cubature Kalman Filter, DHCSQKF)。该滤波器结合了平方根立方卡尔曼滤波器 (SCKF) 的高精度和分布式混合共识算法的鲁棒性,有效解决了多传感器环境下信息融合的实时性和一致性问题。论文详细阐述了DHCSQKF的算法原理,并通过仿真实验验证了其在机动目标跟踪中的有效性和优越性,与现有算法相比,DHCSQKF在跟踪精度、计算效率和抗干扰能力方面均表现出显著优势。
关键词: 机动目标跟踪;分布式混合共识;平方根立方卡尔曼滤波器;信息融合;多传感器
1 引言
机动目标跟踪是目标跟踪领域一个重要的研究方向,广泛应用于雷达、声呐、导航等领域。由于目标运动的非线性特性以及观测噪声的非高斯性,传统的卡尔曼滤波器难以准确地估计机动目标的状态。近年来,随着传感器技术的快速发展,多传感器信息融合技术日益受到关注。然而,在多传感器环境下,如何有效地融合来自不同传感器的信息,并保证信息融合的实时性和一致性,仍然是一个挑战。
针对上述问题,本文提出了一种基于分布式混合共识的平方根立方正交信息滤波器 (DHCSQKF)。该滤波器采用平方根立方卡尔曼滤波器 (SCKF) 进行状态估计,SCKF通过采用Cubature规则对非线性系统进行逼近,有效解决了非线性系统的状态估计问题,同时平方根形式保证了数值稳定性。为了实现多传感器数据融合,本文引入了分布式混合共识算法。混合共识算法兼顾了平均共识算法的收敛速度和最大化共识算法的鲁棒性,有效地解决了网络拓扑结构不确定和节点故障等问题,保证了多传感器数据融合的一致性和可靠性。
2 平方根立方卡尔曼滤波器 (SCKF)
SCKF是一种基于Cubature规则的非线性卡尔曼滤波器,它利用Cubature规则逼近非线性函数的积分,从而实现对非线性系统的状态估计。与传统的扩展卡尔曼滤波器 (EKF) 和无迹卡尔曼滤波器 (UKF) 相比,SCKF具有更高的精度和更好的数值稳定性。SCKF主要包括以下步骤:
-
预测步骤: 根据系统模型预测状态和协方差矩阵。
-
Cubature点选取: 根据预测协方差矩阵选取Cubature点。
-
非线性变换: 将Cubature点通过非线性系统进行变换。
-
权重计算: 根据Cubature点计算权重。
-
更新步骤: 根据测量值更新状态和协方差矩阵。
SCKF通过平方根分解的方式计算协方差矩阵,避免了直接计算协方差矩阵可能造成的数值不稳定性,提高了算法的鲁棒性。
3 分布式混合共识算法
分布式混合共识算法结合了平均共识算法和最大化共识算法的优点。平均共识算法收敛速度快,但对网络拓扑结构和节点故障较为敏感;最大化共识算法鲁棒性强,但收敛速度较慢。混合共识算法通过加权平均的方式融合两种算法的输出,兼顾了收敛速度和鲁棒性。具体算法如下:
4 DHCSQKF算法
DHCSQKF算法将SCKF与分布式混合共识算法结合,实现多传感器环境下的机动目标跟踪。每个传感器节点独立运行一个SCKF,对局部观测数据进行处理,得到局部状态估计和协方差矩阵。然后,利用分布式混合共识算法融合各个节点的局部估计,得到全局状态估计。具体步骤如下:
-
局部SCKF: 每个传感器节点独立运行SCKF,得到局部状态估计 𝑥^𝑖x^i 和协方差矩阵 𝑃𝑖Pi。
-
分布式混合共识: 利用分布式混合共识算法融合各个节点的局部状态估计 𝑥^𝑖x^i 和协方差矩阵 𝑃𝑖Pi,得到全局状态估计 𝑥^x^ 和协方差矩阵 𝑃P。
-
状态更新: 将全局状态估计 𝑥^x^ 和协方差矩阵 𝑃P 用于更新目标状态。
5 仿真实验与结果分析
本文通过仿真实验验证了DHCSQKF算法的有效性。仿真实验中,考虑了具有非线性运动模型和非高斯测量噪声的机动目标,并模拟了多传感器环境。实验结果表明,DHCSQKF算法在跟踪精度、计算效率和抗干扰能力方面均优于传统的EKF、UKF以及基于平均共识的SCKF算法。
6 结论
本文提出了一种基于分布式混合共识的平方根立方正交信息滤波器 (DHCSQKF),用于解决机动目标跟踪中存在的非线性、非高斯和多传感器数据融合等难题。DHCSQKF算法结合了SCKF的高精度和分布式混合共识算法的鲁棒性,有效地提高了目标跟踪的精度和可靠性。仿真实验结果验证了DHCSQKF算法的有效性和优越性,为多传感器机动目标跟踪提供了一种新的有效方法。未来的研究工作将进一步考虑网络拓扑结构的动态变化以及更复杂的机动目标模型。
📣 部分代码
% clc,clear
Nc = 10; % 其中90个通信节点,随机选择10个感知节点;
[E,posSensor,SenNode] = getConnectivitySparse(Nc);
posSenNode = posSensor(:,SenNode); % 感知节点的位置;
posComNode = posSensor;
posComNode(:,SenNode) = []; % 去掉感知节点的位置,剩下通信节点的位置;
figure
hold on;
for i = 1:Nc-1
for j = i+1:Nc
if E(i,j)
plot(posSensor(1,[i,j]),posSensor(2,[i,j]),'b-');
end
end
end
plot(posSenNode(1,:),posSenNode(2,:),'^','MarkerFaceColor',[1,0,0],'MarkerEdgeColor',[0,0,0]);
plot(posComNode(1,:),posComNode(2,:),'sk');
h1 = plot(-5000,-5000,'^','MarkerFaceColor',[1,0,0],'MarkerEdgeColor',[0,0,0]);
h2 = plot(-5000,-5000,'sk');
h3 = plot([-5000,-6000],[-5000,-6000],'b-');
axis([-4000,4000,-4000,4000]);
legend([h1,h2,h3],'Sensor Nodes','Communication Nodes','Communication Link');
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇