✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
人类,作为地球上最具智慧的物种,其智力的极致体现往往在于对已知事物未知维度的探索。工程师们日夜辛勤工作,致力于寻找日常问题的最优解,正是这种锲而不舍的精神推动了人类文明的进步。飞行,便是人类取得的伟大成就之一,而无人机(Unmanned Aerial Vehicles,UAVs),即遥控飞行器(Remotely Piloted Aircraft,RPAs),正朝着彻底革新现代物流运输方式的方向发展,展现了人类智慧的又一次飞跃。
“无人机”一词在20世纪80年代首次出现,用于描述那些依靠空气动力学原理飞行,能够自主或遥控操作,并具备多用途载荷能力的飞行器[1]。其多功能性和动态特性使其成为潜在的“游戏规则改变者”。在这个快节奏、时间至上的时代,无人机在民用领域拥有广泛的应用前景。从农业生产、发展援助到军事侦察、航空摄影测量,再到物流运输等等,无人机的应用范围日益拓展。通过部署无人机,物流运输能够高效地往返于A点和B点之间,节省大量人力、运营时间和资源。在医疗物资运输领域,无人机更是展现出巨大的潜力。
与传统的运输方式相比,无人机在物流运输领域具有显著优势。在人力资源消耗、基础设施需求、周转时间、安全顾虑以及偏远地区可及性等方面,无人机都展现出超越传统方式的优势。无人机的易管理性和经济性得到了迅速提升,这为其在医疗保健领域的应用提供了坚实的基础[2]。
首先,无人机大幅降低了人力成本。相较于需要大量驾驶员、装卸工和管理人员的传统运输方式,无人机只需要少数技术人员进行操作和维护,显著降低了人力成本,尤其在劳动力成本较高的地区,这一优势更加明显。其次,无人机对基础设施的依赖程度较低。传统运输方式往往需要完善的道路、铁路或航运网络,而无人机则可以克服地形限制,抵达传统交通工具难以到达的偏远地区,为偏远地区提供医疗物资和生活必需品,缩小城乡发展差距。
再者,无人机的周转时间大大缩短。无人机能够快速起降,并以较高的速度进行飞行,大大缩短了运输时间,尤其对于时间紧迫的医疗物资运输而言,这无疑是至关重要的。此外,无人机在安全性方面也具有优势。通过先进的导航系统和控制技术,无人机能够有效避免人为操作失误造成的安全事故,提高运输的安全性可靠性。
最后,无人机的应用拓展了服务范围。在山区、沙漠等传统运输方式难以覆盖的地区,无人机能够发挥其独特的优势,将医疗物资、救援物资等快速送达,为偏远地区的人民提供及时的帮助,体现了科技向善的理念。
然而,无人机的应用也面临着一些挑战。例如,无人机的续航能力、载重能力以及安全性仍有提升空间;相关的法律法规和监管机制尚不完善;无人机的抗干扰能力和应对恶劣天气能力也需要进一步增强。只有克服这些挑战,才能充分发挥无人机的优势,使其在现代物流中发挥更大的作用。
总而言之,无人机作为一项具有革命性意义的技术,正在深刻地改变着现代物流运输模式。其高效、便捷、安全、经济的特点使其在各个领域展现出巨大的应用潜力。随着技术的不断进步和法规的不断完善,无人机必将成为现代物流体系中不可或缺的重要组成部分,为人类社会创造更大的价值,再次证明人类智慧的无限可能。 未来,我们可以期待无人机在医疗救治、应急救援、精准农业等领域的更广泛应用,为构建更加美好的人类社会贡献力量。
📣 部分代码
P0=101325; % newton/m2
T0=288.15; %kelvin temperature at sea level
mu0=1.789*10.^-5; % viscoisty at Sea level
R=287; % gas constant
a0=340.294; % speed of sound at sea level
%% lapse rate in K/km
B1=-6.5; %0-11 km
B2=0; %11-20 km
B3=1; %20-32
B4=2.8; %32-47
B5=0; %47-51
B6=-2.8 ; %51-71
B7=-2; %86-71
B=6.5;
z=rohith;
for i=1:length(z)
if z(i)<=11
z0=0;
T(i)=T0+(B1.*(z(i)-z0));
T11=T(end);
elseif z(i)<=20
z11=11;
T(i)=T11+(B2.*(z(i)-z11));
T20=T(end);
elseif z(i)<=32
z20=20;
T(i)=T20+(B3.*(z(i)-z20));
T32=T(end);
elseif z(i)<=47
z32=32;
T(i)=T32+(B4.*(z(i)-z32));
T47=T(end);
elseif z(i)<=51
z47=47;
T(i)=T47+(B5.*(z(i)-z47));
T51=T47(end);
elseif z(i)<=71
z51=51;
T(i)=T47+(B6.*(z(i)-z51));
T51=T(end);
z71=71;
elseif z(i)>71
T(i)=T51+(B7.*(z(i)-z71));
end
end
Bp =0.0065;
P = P0.*(1-(Bp.*(z*1000).*T0.^-1)).^(g*(R.*Bp).^-1);
P_pa=P*10.^5;
a = sqrt(gamma*R*T);
mu = (1.458*10.^-6)*((T.^1.5).*(T+110.4).^-1 ) ;
rho = P.*((R.*T).^-1);
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇