作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、系统架构与组成单元
1. 光热电站(CSP)
- 功能
:利用聚光装置将太阳能转化为热能,通过储热系统(如熔融盐)实现稳定发电,具备调峰能力。
- 关键参数
:
-
聚光比、集热效率、储热容量、发电效率(汽轮机 + 发电机)。
-
储热时长(如 8-12 小时)决定其出力调节灵活性。
-
2. 有机朗肯循环(ORC)
- 功能
:回收低品位热能(如光热电站余热、工业废热)发电,提升系统能效。
- 关键参数
:
-
工质类型(如异戊烷、R134a)、热源温度(影响循环效率)、发电功率上限。
-
余热回收效率通常为 10%-15%。
-
3. 电转气(P2G)
- 功能
:利用过剩电力(如弃风弃光)电解水制氢(H₂),进一步合成甲烷(CH₄)或直接存储,实现电能 - 气体能的转化。
二、优化调度的核心目标与约束
三、优化模型与算法
1. 模型类型
- 混合整数线性规划(MILP)
:适用于离散变量(如设备启停)和连续变量(如功率、流量)的组合优化。
- 随机优化
:考虑太阳能、风速等不确定性,通过场景生成(如蒙特卡洛模拟)和鲁棒优化提升系统鲁棒性。
- 分层优化
:
-
上层:长期储能配置与设备容量规划(如 P2G 规模、储热罐容量)。
-
下层:短期(日前 / 实时)调度,基于天气预报调整光热电站储热策略、P2G 启停时机。
-
2. 关键算法
- 粒子群优化(PSO)
:处理高维非线性问题,优化多目标函数(如经济性与低碳的权衡)。
- 动态规划(DP)
:适用于时序关联强的调度问题(如光热储热的充放电策略)。
- 分布式优化
:考虑多能源子系统(电 / 热 / 气)的协同,通过一致性算法实现全局最优。
四、典型调度策略
1. 光热电站的储热 - 发电协同
- 日间模式
:
强光时段:集热器优先向储热系统充热,同时满足电 / 热负荷;
弱光时段:储热系统放热发电,维持稳定出力。 - 调峰模式
:
在电价峰段(如傍晚)增加发电,电价谷段利用低价电驱动 P2G 制氢。
2. ORC 的余热回收策略
- 优先回收光热电站余热
:
当光热电站运行时,ORC 利用其废热发电,减少对主电网的依赖。 - 工业废热耦合
:
接入周边工厂余热时,ORC 作为基荷电源,稳定输出电力。
3. P2G 的多场景应用
- 弃电消纳
:
当风光出力过剩且电价低于制氢成本时,启动 P2G 制氢,存储于气罐或注入天然气管网。 - 气电协同调峰
:
电力负荷低谷期制氢,高峰期通过燃气轮机发电(如氢燃料电池),实现 “电 - 气 - 电” 循环。
五、挑战与发展方向
1. 技术挑战
- 多能流耦合复杂性
:电 / 热 / 气网络动态特性差异大,需高精度跨域建模。
- 储热 / 储氢成本高
:熔融盐储热初期投资约$300/kWh,绿氢存储成本约$3/kg H₂。
- 设备寿命管理
:光热电站聚光器衰减、电解槽膜组件损耗需纳入优化模型。
2. 发展方向
- 数字孪生技术
:构建实时仿真平台,动态优化调度策略。
- 氢储能规模化
:探索氢燃料电池、氢储能与 P2G 的全链条成本下降路径。
- 政策激励
:碳交易机制、绿证交易等市场化手段提升系统经济性。
六、仿真工具推荐
- 多能流仿真
:
- EnergyPlus
:建筑 / 工业热负荷建模,支持 ORC 系统仿真。
- Modelica
:多物理场统一建模,适用于光热 - ORC 耦合系统。
- EnergyPlus
- 优化算法平台
:
- GAMS
:内置 CPLEX/IPOPT 求解器,支持大规模 MILP 模型。
- MATLAB/Simulink
:结合 YALMIP 工具包,实现粒子群优化等启发式算法。
- GAMS
- 气网仿真
:
- GasLib
:天然气网络潮流计算,支持 P2G 注入场景模拟。
- GasLib
⛳️ 运行结果
🔗 参考文献
[1] 崔杨、闫石、仲悟之、王铮、张鹏、赵钰婷.含电转气的区域综合能源系统热电优化调度[J].电网技术, 2020, 44(11):10.DOI:10.13335/j.1000-3673.pst.2019.2468.
[2] 孙健.冷热电气型微能源网优化调度研究[D].东北电力大学,2020.
[3] 陈锦鹏.考虑阶梯式碳交易与灵活性资源的综合能源系统优化调度[J].[2025-06-05].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇