【创新未发表】基于蜣螂算法DBO、灰狼算法GWO、鲸鱼算法WOA和牛顿拉夫逊算法NRBO复杂山地危险模型无人机路径规划问题附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 无人机在复杂山地环境下的路径规划问题,由于地形复杂、障碍物众多以及潜在危险区域的存在,极具挑战性。本文针对此问题,提出了一种基于蜣螂算法(DBO)、灰狼算法(GWO)、鲸鱼算法(WOA)以及改进牛顿拉夫逊算法(NR)的混合路径规划方法。该方法首先构建了一个考虑地形高程、坡度、植被覆盖度等因素的复杂山地危险模型,然后利用DBO、GWO和WOA算法分别进行路径搜索,并结合NR算法优化所得路径,最终获得一条安全、高效的无人机飞行路径。通过仿真实验,验证了该方法的有效性和优越性,并分析了不同算法参数对路径规划结果的影响。

关键词: 无人机路径规划;复杂山地;危险模型;蜣螂算法;灰狼算法;鲸鱼算法;牛顿拉夫逊算法;混合算法

1 绪论

随着无人机技术的快速发展,无人机在各个领域的应用日益广泛。然而,在复杂山地环境中进行无人机路径规划仍然是一个具有挑战性的难题。复杂的山地地形、茂密的植被、以及潜在的危险区域(如悬崖、陡坡、强风区域等)都对无人机的安全飞行构成威胁。传统的路径规划方法,例如A*算法、Dijkstra算法等,在处理复杂山地环境时往往效率低下,甚至难以找到可行的路径。因此,需要开发更有效的路径规划算法来应对这一挑战。

近年来,涌现出许多基于智能优化算法的路径规划方法,例如遗传算法、粒子群算法、蚁群算法等。这些算法能够有效地搜索复杂的解空间,并找到较优的路径。然而,这些算法也存在一些不足,例如容易陷入局部最优解、收敛速度慢等。

本文提出了一种基于蜣螂算法(DBO)、灰狼算法(GWO)、鲸鱼算法(WOA)以及改进牛顿拉夫逊算法(NR)的混合路径规划方法,用于解决复杂山地环境下的无人机路径规划问题。蜣螂算法(DBO)是一种新兴的元启发式算法,具有较强的全局搜索能力;灰狼算法(GWO)具有良好的收敛速度和全局寻优能力;鲸鱼算法(WOA)模拟鲸鱼觅食行为,具有较强的局部搜索能力。通过将这三种算法结合起来,可以充分发挥各自的优势,提高路径规划的效率和质量。此外,本文还利用改进的牛顿拉夫逊算法对优化后的路径进行局部优化,进一步提高路径的平滑度和安全性。

2 复杂山地危险模型构建

为了准确地模拟复杂山地环境,本文构建了一个考虑地形高程、坡度、植被覆盖度等因素的危险模型。该模型将山地环境划分为网格,每个网格单元都赋予一个危险度值,该值综合考虑了地形因素和环境因素的影响。

  • 地形高程: 高程差越大,危险度越高。

  • 坡度: 坡度越大,危险度越高。

  • 植被覆盖度: 植被覆盖度越高,危险度越低(假设植被可以缓冲坠落冲击)。

  • 障碍物: 障碍物区域危险度设为最大值。

  • 风速: 风速越大,危险度越高(根据实际情况设定阈值)。

危险度值的计算可以使用加权线性组合或者模糊逻辑等方法。本文采用加权线性组合的方法,其表达式如下:

𝑅=𝑤1𝐻+𝑤2𝑆+𝑤3𝐶+𝑤4𝑂+𝑤5𝑊

3 基于DBO、GWO、WOA和改进NR算法的混合路径规划方法

本文提出的混合路径规划方法主要包括以下步骤:

  1. 初始化: 随机生成多个初始路径。

  2. 路径搜索: 分别使用DBO、GWO和WOA算法对初始路径进行优化,得到三个不同的路径集合。

  3. 路径选择: 从三个路径集合中选择一条最优路径作为候选路径。 选择的标准可以是路径长度、总危险度等。

  4. 路径优化: 使用改进的牛顿拉夫逊算法对候选路径进行局部优化,使其更加平滑,避免出现急转弯等危险情况。改进之处在于加入了对路径安全性的约束,例如避免路径穿过高危险度区域。

  5. 输出: 输出最终优化后的无人机飞行路径。

4 仿真实验与结果分析

本文使用Matlab软件进行仿真实验,验证了所提方法的有效性。仿真实验中,我们构建了一个具有复杂地形和障碍物的山地环境模型。实验结果表明,本文提出的混合算法能够有效地找到一条安全、高效的无人机飞行路径,其路径长度和总危险度均优于传统的路径规划算法。同时,我们还分析了不同算法参数对路径规划结果的影响,并对算法的收敛速度和稳定性进行了评估。

5 结论与未来工作

本文提出了一种基于DBO、GWO、WOA和改进NR算法的混合路径规划方法,用于解决复杂山地环境下的无人机路径规划问题。该方法有效地结合了多种智能优化算法的优点,能够找到安全、高效的无人机飞行路径。未来的工作将集中在以下几个方面:

  • 进一步完善复杂山地危险模型,考虑更多影响因素,例如气象条件、能见度等。

  • 研究更有效的算法参数自适应调整策略,提高算法的鲁棒性和适应性。

  • 将该方法应用于实际的无人机飞行任务中,进行实际测试和验证。

  • 探索多无人机协同路径规划问题,提高任务效率。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值