✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
超音速流动,因其复杂的物理现象和广泛的工程应用,一直是流体力学研究的热点领域。平板作为最基本的几何形状,其上的超音速流动模拟能够为理解激波、边界层相互作用等关键现象提供重要的理论基础和数值验证。本文将深入探讨基于纳维-斯托克斯方程对平板超音速流动的模拟,涵盖方程组的建立、数值方法的选择、结果分析以及存在的挑战等方面。
一、 控制方程组:纳维-斯托克斯方程
描述可压缩粘性流动的基本方程组是纳维-斯托克斯方程,它包含了质量守恒、动量守恒和能量守恒三个基本守恒定律。对于二维稳态绝热超音速流动,其无量纲形式的雷诺平均纳维-斯托克斯方程(RANS)可表示为:
-
连续性方程: ∂ρ/∂x + ∂(ρu)/∂x + ∂(ρv)/∂y = 0
-
x方向动量方程: ∂(ρu)/∂t + ∂(ρu² + p)/∂x + ∂(ρuv)/∂y = -∂τ<sub>xx</sub>/∂x - ∂τ<sub>xy</sub>/∂y
-
y方向动量方程: ∂(ρv)/∂t + ∂(ρuv)/∂x + ∂(ρv² + p)/∂y = -∂τ<sub>yx</sub>/∂x - ∂τ<sub>yy</sub>/∂y
-
能量方程: ∂(ρE)/∂t + ∂(ρu(E+p/ρ))/∂x + ∂(ρv(E+p/ρ))/∂y = -∂q<sub>x</sub>/∂x - ∂q<sub>y</sub>/∂y + ∂(uτ<sub>xx</sub> + vτ<sub>xy</sub>)/∂x + ∂(uτ<sub>yx</sub> + vτ<sub>yy</sub>)/∂y
其中,ρ为密度,u和v分别为x和y方向的速度分量,p为压力,E为单位质量的总能量,τ<sub>ij</sub>为粘性应力张量,q<sub>i</sub>为热通量矢量。 对于理想气体,状态方程为p = ρRT,其中R为气体常数,T为温度。 粘性应力张量和热通量矢量的具体表达式需要根据牛顿粘性定律和傅里叶热传导定律确定,并引入湍流模型来处理湍流效应。
二、 数值方法
求解上述非线性偏微分方程组,需要采用数值方法。常用的方法包括有限差分法、有限体积法和有限元法。 由于超音速流动中存在激波等间断现象,有限体积法因其守恒性好,在处理激波方面具有优势,因此被广泛应用。 具体实施中,需要选择合适的离散格式,例如迎风格式(例如Roe格式、AUSM格式等)来捕捉激波,并采用适当的边界条件处理。
对于平板超音速流动,远场边界条件通常采用超音速外流条件,平板表面采用无滑移条件和绝热条件。 此外,还需要考虑网格的生成,精细的网格能够更好地捕捉边界层和激波结构,但同时也增加了计算成本。 因此,需要根据计算精度和计算资源进行权衡。
三、 湍流模型
由于超音速流动中普遍存在湍流,需要引入湍流模型来闭合RANS方程组。常用的湍流模型包括k-ε模型、k-ω模型以及雷诺应力模型(RSM)等。 k-ε模型因其计算效率高而被广泛应用,但其精度相对较低,尤其在处理复杂流动结构时。 k-ω模型在近壁区精度更高,而RSM则能够提供更精确的湍流信息,但计算成本也更高。 选择合适的湍流模型取决于计算精度和计算资源的平衡。
四、 结果分析与讨论
数值模拟的结果通常包含压力分布、速度分布、密度分布以及激波位置等信息。 通过分析这些结果,可以研究激波的强度、位置以及边界层的发展情况。 可以与实验结果或理论解进行比较,验证数值模拟的精度和可靠性。 此外,还可以通过改变来流马赫数、雷诺数等参数,研究不同条件下平板超音速流动的特性。
五、 挑战与展望
尽管纳维-斯托克斯方程能够较好地描述超音速流动,但其数值模拟仍然面临一些挑战:
-
高雷诺数流动: 高雷诺数流动计算量巨大,需要采用高效的数值算法和高性能计算资源。
-
激波捕捉: 精确捕捉激波的位置和强度,需要采用高精度和高分辨率的数值方法。
-
湍流模型: 湍流模型的精度直接影响计算结果的可靠性,需要开发更精确和更有效的湍流模型。
-
边界层分离: 在某些条件下,边界层可能会发生分离,这使得数值模拟更加复杂。
未来的研究方向包括:开发更高效、更精确的数值方法;发展更先进的湍流模型;结合实验和理论研究,进一步完善对超音速流动的理解。 高精度计算技术的进步和高性能计算资源的提高,将为进一步研究超音速流动提供有力支持。
总而言之,基于纳维-斯托克斯方程模拟平板上的超音速流动是一个复杂但重要的研究课题。 通过合理选择数值方法、湍流模型以及边界条件,能够获得较为准确的模拟结果,为工程设计和科学研究提供重要的参考依据。 然而,该领域的研究仍然面临诸多挑战,需要不断探索和改进,以推动超音速流动模拟技术的进步。
📣 部分代码
% At the boundaries there is only one possibility: a forward difference when i,j = 1 and a rearward difference when i,j = IMAX,JMAX.
% To compute du_dx:
if (strcmp(call_case, 'Predict_E'))
for i = 2:IMAX
for j = 1:JMAX
du_dx(j,i) = (u(j,i) - u(j,i-1))/DX; % Rearward difference (opposite to predictor)
end
end
du_dx(:,1) = (u(:,2) - u(:,1))/DX; % Forward at i = 1
elseif (strcmp(call_case, 'Correct_E'))
for i = 1:IMAX-1
for j = 1:JMAX
du_dx(j,i) = (u(j,i+1) - u(j,i))/DX; % Forward difference (opposite to corrector)
end
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇