✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
无线功率传输 (Wireless Power Transfer, WPT) 技术作为一种突破性的能量供应方式,近年来受到了广泛关注,其在便携式电子设备、植入式医疗器件、电动汽车以及无人机等领域的应用前景尤为广阔。然而,现有的WPT系统普遍面临着传输距离有限、能量转换效率低以及对环境干扰敏感等挑战。为了克服这些限制,实现宽范围、鲁棒的无线功率传输,本文将深入探讨异构耦合和翻转技术在提升WPT系统性能方面的作用。
传统WPT系统大多采用同构耦合方式,即发射端和接收端采用相同类型的谐振器。这种方式虽然在近距离传输中效率较高,但随着传输距离的增加,耦合系数急剧下降,导致传输效率显著降低。此外,同构耦合系统对接收端姿态和位置变化非常敏感,其鲁棒性较差。因此,为了实现宽范围的能量传输,需要探索新的耦合方式。异构耦合技术应运而生,它采用不同类型或不同尺寸的谐振器作为发射端和接收端,例如,将磁性谐振器与电容性谐振器进行组合。这种异构耦合方式能够有效地扩展系统的传输距离和提升其对环境干扰的鲁棒性。
其根本原因在于异构耦合能够更好地匹配发射端和接收端的阻抗,从而提高能量传输效率。不同类型的谐振器具有不同的电磁特性,通过巧妙的设计,可以实现发射端和接收端之间更有效的能量耦合。此外,异构耦合结构可以提供更灵活的系统设计空间,从而适应各种复杂的应用场景。例如,可以根据实际需求选择合适的谐振器类型和尺寸,优化能量传输效率和系统鲁棒性。
然而,单纯依靠异构耦合并不能完全解决所有问题。在远距离传输场景下,能量衰减仍然是一个主要瓶颈。为了进一步提升传输效率和鲁棒性,翻转技术被引入到WPT系统中。翻转技术是指通过改变发射端或接收端的电磁特性来调整能量传输路径,例如,通过改变谐振器的结构参数或控制谐振频率等方式。这种技术可以有效地克服传输路径中的障碍物,并适应不同环境下的能量传输需求。
具体而言,翻转技术可以通过以下几个方面提升WPT系统性能:首先,它可以实现动态阻抗匹配,有效地减少能量反射和损耗;其次,它可以改善能量传输路径,减少环境干扰的影响;最后,它可以提高系统的自适应能力,使其能够在复杂的环境中稳定地工作。
将异构耦合和翻转技术结合起来,可以构建具有宽范围鲁棒性的WPT系统。这种系统能够在较宽的传输距离范围内保持较高的能量传输效率,并对接收端姿态和位置变化以及环境干扰具有较强的鲁棒性。例如,可以设计一个基于异构耦合的WPT系统,该系统采用磁性谐振器作为发射端,电容性谐振器作为接收端。同时,采用智能控制算法实现动态翻转,根据接收端的姿态和位置调整发射端的电磁特性,从而实现稳定的能量传输。
当然,这种结合也面临着一些挑战。例如,如何设计高效的异构耦合结构,如何实现精确的翻转控制,以及如何降低系统的复杂度和成本等。未来的研究方向应该集中在以下几个方面:开发新的异构耦合结构和材料,研究更有效的翻转控制算法,探索新的系统架构,以及开展更深入的理论分析和实验验证。
总而言之,异构耦合和翻转技术为实现宽范围鲁棒的无线功率传输提供了新的途径。通过深入研究和持续创新,相信未来WPT技术将会在更多领域得到广泛应用,为人类社会带来更大的福祉。 进一步的研究工作应该集中在提高能量转换效率、降低系统成本、增强系统安全性以及拓展应用范围等方面,以推动WPT技术走向成熟和商业化。 这将需要多学科的合作,包括电磁学、电子工程、材料科学和控制理论等领域的专家共同努力,才能最终实现无线能量传输技术的巨大潜力。
📣 部分代码
% components of the neutral resonators
L_n = 520e-09;
Rs_n = 0.3;
C_n = 216.5e-12;
% components of the load resonator
L_l = 520e-09;
Rs_l = 0.3;
C_l = 216.5e-12;
R = 2000;
% calculate resonant frequency and loss rate for efficiency
omega0 = 1/sqrt(L_l*C_l);
⛳️ 运行结果
🔗 参考文献
[1] Kim H , Yoo S , Joo H ,et al.Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity-time symmetry[J].Science Advances, 2022, 8.DOI:10.1126/sciadv.abo4610.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇