【电池寿命预测】基于拓展卡尔曼滤波的电池寿命预测模型附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源结构的转型和电动汽车、储能系统等技术的飞速发展,锂离子电池作为其核心组成部分,其性能和可靠性受到了前所未有的关注。电池寿命,作为衡量其性能和可靠性的关键指标,直接影响着设备的运行效率、维护成本以及用户体验。准确预测电池寿命不仅有助于优化电池管理系统(BMS),实现更精细化的充放电策略,延长电池使用寿命,更能为设备的设计、生产、回收等环节提供重要参考,从而提高整个产业链的效率和可持续性。

然而,电池寿命的衰减过程是一个复杂且受多种因素影响的非线性动态过程。温度、充放电速率、放电深度、循环次数以及存储条件等都会对电池的健康状态(State of Health, SOH)产生影响,而SOH通常被用来间接衡量电池的寿命。由于电池内部的电化学反应难以直接观测,传统的基于实验数据拟合或简单的循环计数方法往往难以捕捉到电池衰减的内在规律,预测精度有限。因此,亟需开发更为先进和鲁棒的电池寿命预测模型。

在众多预测方法中,基于模型的预测方法因其能够利用电池的内在机理,具有较好的泛化能力和解释性而备受青睐。卡尔曼滤波(Kalman Filter, KF)作为一种最优线性滤波器,在处理线性动态系统的状态估计问题上表现出色。然而,电池的衰减过程具有显著的非线性特征,这使得标准的卡尔曼滤波难以直接应用。为了应对这一挑战,拓展卡尔曼滤波(Extended Kalman Filter, EKF)应运而生。EKF通过对非线性系统进行局部线性化,将卡尔曼滤波的思想推广到非线性系统中,为电池寿命的在线预测提供了可能。

本文将深入探讨基于拓展卡尔曼滤波的电池寿命预测模型。我们将从电池衰减机理和SOH表征入手,阐述如何构建能够描述电池衰减过程的状态空间模型。随后,我们将详细介绍拓展卡尔曼滤波的原理,以及如何将其应用于电池SOH的在线估计和寿命预测。最后,我们将讨论模型的优化和应用前景,为电池寿命的精准预测提供理论和实践指导。

第一章 电池衰减机理与SOH表征

电池寿命的衰减是多种复杂机理共同作用的结果。了解这些机理是构建准确寿命预测模型的基础。主要的衰减机理包括:

  1. 活性物质损失:

     循环过程中,正负极活性物质可能发生脱落、溶解、相变等,导致有效反应面积减小,容量下降。

  2. 电解液分解:

     高温、过充等条件下,电解液会发生分解,产生气体、固体沉积物等,增加内阻,阻碍离子迁移。

  3. 固态电解质界面(Solid Electrolyte Interface, SEI)膜的生长与变化:

     SEI膜在首次循环时形成,对电池性能至关重要。然而,不稳定的SEI膜会持续生长、破裂,消耗锂离子,增加界面阻抗。

  4. 集流体腐蚀:

     高温或高电位下,集流体可能发生腐蚀,增加接触电阻。

  5. 枝晶生长:

     特别是在快速充电或低温条件下,锂离子可能在负极表面不均匀沉积形成枝晶,刺穿隔膜,导致短路甚至安全事故。

这些机理共同导致电池容量下降和内阻增加,进而影响电池的输出功率和能量。

为了量化电池的健康状态,通常采用SOH来表示。SOH的定义方式多种多样,常见的定义有:

  1. 基于容量的SOH:

     SOH = (当前最大可用容量 / 初始最大可用容量) × 100%。这是最常用的SOH定义,直观反映了电池容量的衰减程度。

  2. 基于内阻的SOH:

     SOH = (当前内阻 - 初始内阻) / (生命周期结束时的内阻 - 初始内阻) × 100%。内阻的增加也是电池衰减的重要标志。

在电池寿命预测中,通常以容量衰减作为主要的SOH表征,并设定一个容量阈值(例如,初始容量的80%)作为电池寿命结束的标志。

构建基于模型的预测方法,需要建立能够描述SOH随时间或循环次数变化的数学模型。这些模型通常是基于对电池衰减机理的理解或从大量实验数据中提取规律构建的。常用的SOH衰减模型包括:

  1. 经验模型:

     基于实验数据拟合的数学函数,例如多项式模型、指数模型、对数模型等。这类模型简单易用,但缺乏物理意义,泛化能力有限。

  2. 半经验模型:

     结合部分物理机理和经验参数的模型。例如,Peukert方程描述了不同放电倍率对可用容量的影响,可以与SOH模型结合。

  3. 电化学模型:

     基于电化学原理,建立描述电池内部电化学过程的微分方程组。这类模型最能反映电池的内在机理,但模型复杂,计算量大,参数难以获取。

在基于滤波器的寿命预测框架中,通常采用能够描述SOH演化过程的状态空间模型。状态空间模型由状态方程和量测方程组成。状态方程描述了系统状态随时间的演化规律,而量测方程描述了如何从系统状态获得可观测的量。对于电池SOH预测,状态通常选择能够表征电池健康状态的变量,例如SOH本身或与SOH相关的参数。量测通常选择易于获取的电池外部电学量,例如电压、电流、温度等。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值