【SLAM】基于扩展卡尔曼滤波器实现多机器人状态估计附Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 多机器人系统(Multi-Robot System, MRS)在诸多领域展现出强大的应用潜力,例如协同搜索救援、分布式环境监测以及自主导航等。然而,在复杂动态环境中,单个机器人的感知能力往往有限,难以精确估计自身状态及周围环境。多机器人协同状态估计,即利用多个机器人传感器信息融合,提高系统整体状态估计精度,成为MRS的关键技术之一。本文重点探讨基于扩展卡尔曼滤波器(Extended Kalman Filter, EKF)的多机器人状态估计方法。我们将详细阐述EKF的基本原理,分析其在多机器人系统中的应用,并探讨其优缺点及改进策略。

关键词: 多机器人系统;状态估计;扩展卡尔曼滤波器;传感器融合;协同定位与地图构建

1. 引言

多机器人系统具有冗余性、鲁棒性以及分布式处理能力等优势,使其能够完成单机器人无法胜任的任务。然而,在实际应用中,每个机器人自身的传感器存在测量噪声和局限性,导致对自身状态和环境的估计存在误差。为了提高系统整体的感知能力和可靠性,需要对来自多个机器人的传感器数据进行融合,从而获得更精确的状态估计。

卡尔曼滤波器(Kalman Filter, KF)是一种经典的递归状态估计方法,广泛应用于各种领域。然而,对于非线性系统,KF的性能会显著下降。扩展卡尔曼滤波器(EKF)是对KF的扩展,通过对系统方程进行线性化,将其应用于非线性系统。EKF在多机器人状态估计中具有重要的应用价值,能够有效地融合来自多个机器人的观测数据,提高系统状态估计精度。

本文将详细阐述基于EKF的多机器人状态估计方法,包括EKF的基本原理、多机器人状态估计模型的构建、信息融合策略以及算法的性能分析。并进一步讨论EKF的局限性以及可能的改进方向。

2. 扩展卡尔曼滤波器(EKF)基本原理

EKF是一种基于高斯分布假设的递归贝叶斯估计方法,用于估计非线性动力学系统和测量系统的状态。其核心思想是将非线性系统在当前状态附近进行一阶泰勒展开线性化,然后应用标准的卡尔曼滤波算法。

EKF算法主要包含两个步骤:预测和更新。

  • 预测步骤: 根据系统模型预测下一时刻的状态和协方差。假设系统状态方程为:

    x<sub>k</sub> = f(x<sub>k-1</sub>, u<sub>k</sub>, w<sub>k</sub>)

    其中,x<sub>k</sub> 为k时刻的状态向量,u<sub>k</sub> 为k时刻的控制输入,w<sub>k</sub> 为过程噪声,服从高斯分布 N(0, Q<sub>k</sub>)。 EKF通过对f进行线性化得到雅可比矩阵F<sub>k-1</sub> = ∂f/∂x |<sub>x<sub>k-1</sub></sub>,从而进行状态和协方差的预测:

    x̂<sub>k|k-1</sub> = f(x̂<sub>k-1|k-1</sub>, u<sub>k</sub>, 0)
    P<sub>k|k-1</sub> = F<sub>k-1</sub>P<sub>k-1|k-1</sub>F<sub>k-1</sub><sup>T</sup> + Q<sub>k</sub>

  • 更新步骤: 利用新的观测数据更新状态估计。假设观测方程为:

    z<sub>k</sub> = h(x<sub>k</sub>, v<sub>k</sub>)

    其中,z<sub>k</sub> 为k时刻的观测向量,v<sub>k</sub> 为观测噪声,服从高斯分布 N(0, R<sub>k</sub>)。 EKF通过对h进行线性化得到雅可比矩阵H<sub>k</sub> = ∂h/∂x |<sub>x̂<sub>k|k-1</sub></sub>,从而进行卡尔曼增益计算和状态更新:

    K<sub>k</sub> = P<sub>k|k-1</sub>H<sub>k</sub><sup>T</sup>(H<sub>k</sub>P<sub>k|k-1</sub>H<sub>k</sub><sup>T</sup> + R<sub>k</sub>)<sup>-1</sup>
    x̂<sub>k|k</sub> = x̂<sub>k|k-1</sub> + K<sub>k</sub>(z<sub>k</sub> - h(x̂<sub>k|k-1</sub>, 0))
    P<sub>k|k</sub> = (I - K<sub>k</sub>H<sub>k</sub>)P<sub>k|k-1</sub>

3. 基于EKF的多机器人状态估计模型

在多机器人系统中,每个机器人的状态向量x<sub>i</sub> 通常包含位置、速度、姿态等信息。系统状态向量x 为所有机器人状态向量的组合。观测数据包括来自每个机器人的传感器数据,例如里程计数据、GPS数据、以及机器人之间的相对位置观测数据(例如,通过视觉或超声波传感器)。

构建EKF模型的关键在于定义系统状态方程和观测方程。状态方程描述了每个机器人的运动模型,例如,可以采用非线性运动学模型或动力学模型。观测方程描述了传感器测量与机器人状态之间的关系,需要根据具体传感器类型进行建模。

信息融合策略是多机器人EKF的关键。常用的方法包括:

  • 集中式EKF: 将所有机器人的传感器数据集中到一个中央处理器进行处理。这种方法计算量较大,但可以充分利用所有信息。

  • 分布式EKF: 每个机器人独立运行一个EKF,然后通过通信网络交换信息进行融合。这种方法计算量较小,但信息融合效率可能较低。

4. 算法性能分析与改进

EKF的性能受线性化误差的影响较大。当系统非线性程度较高时,线性化近似精度下降,导致EKF估计精度降低,甚至发散。为了提高EKF的性能,可以考虑以下改进策略:

  • 高阶EKF: 使用高阶泰勒展开进行线性化,提高线性化精度。

  • 无迹卡尔曼滤波器(Unscented Kalman Filter, UKF): UKF是一种基于采样的非线性滤波方法,不需要进行线性化,能够更好地处理非线性系统。

  • 粒子滤波器(Particle Filter, PF): PF是一种基于蒙特卡洛方法的非线性滤波方法,能够处理更复杂的非线性系统,但计算量较大。

5. 结论

基于扩展卡尔曼滤波器实现多机器人状态估计是一种有效的方法,能够融合来自多个机器人的传感器数据,提高系统状态估计的精度和鲁棒性。本文详细阐述了EKF的基本原理以及其在多机器人状态估计中的应用,并探讨了其优缺点以及可能的改进策略。未来的研究方向可以集中在提高EKF的鲁棒性和效率,以及探索更先进的非线性滤波方法在多机器人状态估计中的应用。 进一步的研究应该关注在实际应用中的算法优化和资源管理,例如考虑通信延迟和带宽限制对分布式EKF的影响,以及如何处理传感器故障和异常值。 此外,结合深度学习等技术,可以进一步提高多机器人状态估计的精度和智能化水平。

📣 部分代码

%% Environment Setup

K = 10; % number of robots

dt = 0.1; % time step

T = 20; % end time

tvec = 0:dt:T;

rng(3);

bound = 5; % environment boundary

axlimits = [-bound bound -bound bound];

N = 12;

landmarks = 2*bound*rand(N, 2) - bound; % landmark coordinates

c = 1:N; % landmark signatures / correspondence variables

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值