【LEACH协议】基于matlab的改进的Leach协议无线传感器网络网络寿命提升

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在无线传感器网络(WSN)的应用场景中,节点能量有限且难以补充,网络寿命成为制约其长期稳定运行的关键因素。LEACH(Low - Energy Adaptive Clustering Hierarchy)协议作为经典的分簇路由协议,旨在均衡网络能耗,但原始协议仍存在能耗不均衡、簇头选举不合理等问题。通过对 LEACH 协议进行改进,可有效提升无线传感器网络的寿命,为 WSN 在环境监测、工业自动化等领域的广泛应用提供有力支持。

LEACH 协议基础与网络寿命瓶颈

1. LEACH 协议原理

LEACH 协议采用分簇结构,将网络中的节点划分为多个簇,每个簇选举出一个簇头。簇头负责收集簇内成员节点的数据,并进行数据融合处理,随后将融合后的数据传输至基站。该协议通过随机循环选举簇头的方式,试图均衡网络中各节点的能量消耗。在每一轮运行过程中,协议分为簇的建立阶段和稳定的数据传输阶段。在簇建立阶段,节点根据一定概率竞争成为簇头,非簇头节点根据信号强度选择加入距离最近的簇;稳定传输阶段,簇内节点将数据发送给簇头,簇头再将处理后的数据发送至基站。

2. 网络寿命受限因素

原始 LEACH 协议存在诸多导致网络寿命受限的问题。一方面,簇头选举概率固定,未考虑节点剩余能量,可能导致能量较低的节点当选簇头,加速其能量耗尽,造成网络能耗不均衡。另一方面,数据传输过程中,簇头与基站之间的通信距离可能过长,导致簇头节点能耗过快,一旦部分簇头节点能量耗尽,会影响整个网络的数据传输,进而缩短网络寿命。此外,缺乏有效的数据融合策略,也使得节点在数据传输过程中消耗了不必要的能量。

改进的 LEACH 协议策略

1. 基于节点剩余能量的簇头选举

对簇头选举机制进行改进,引入节点剩余能量作为选举的重要依据。在选举过程中,每个节点将自身剩余能量信息广播至邻居节点。计算节点成为簇头的概率时,不仅考虑原始协议中的固定概率,还结合节点剩余能量与网络平均剩余能量的比值进行调整。例如,节点剩余能量高于网络平均剩余能量时,其成为簇头的概率相应提高;反之则降低。这样可以优先选择能量充足的节点作为簇头,避免低能量节点过早死亡,均衡网络能耗。

2. 优化分簇与簇头位置

为减少簇头与基站之间的通信距离,降低簇头节点的能耗,可采用基于地理位置信息的分簇方法。通过 GPS 或其他定位技术获取节点的位置信息,在分簇时,尽量使簇头节点分布均匀,且距离基站相对较近。同时,考虑节点的通信半径和覆盖范围,合理调整簇的大小,避免出现簇内节点数量过多或过少的情况。例如,对于距离基站较远的区域,适当减小簇的规模,以降低簇头节点的数据融合和传输压力;对于靠近基站的区域,可适当增大簇的规模,提高网络资源利用率。

3. 高效的数据融合与传输策略

改进数据融合算法,提高数据处理效率,减少数据传输量。采用基于压缩感知的数据融合方法,在簇头节点对收集到的数据进行压缩处理,只传输关键信息,降低数据传输过程中的能量消耗。同时,优化数据传输路径,引入多跳传输机制。对于距离基站较远的簇头节点,可通过中间节点进行多跳转发,避免长距离直接传输带来的高能耗。例如,选择剩余能量较高、距离合适的节点作为中继节点,接力传输数据至基站,从而均衡网络中各节点的能耗,延长网络寿命。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值