【天线方向图】传统偶极子三维天线的辐射方向图Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

传统偶极子天线作为一种经典的电磁辐射器件,其结构简单、易于制造且具有良好的辐射特性,在无线通信、广播电视等领域广泛应用。本文将深入探讨传统偶极子三维天线的辐射方向图,分析其辐射特性,并探讨其在实际应用中的考量因素。

偶极子天线,顾名思义,由两根长度相等的导体构成,两端通常对称馈电。其辐射特性与其长度、工作频率以及周围环境密切相关。半波长偶极子天线是最常见的类型,其长度约等于工作波长的二分之一。这种长度的偶极子天线能够在垂直于天线轴线的平面内产生最大辐射强度,形成一个典型的“甜甜圈”形状的辐射方向图。然而,将这一二维的辐射特性扩展到三维空间,需要更深入的分析。

三维辐射方向图通常以球坐标系表示,用三个坐标参数(r, θ, φ)来描述空间中任意一点的辐射强度。其中,r表示该点到天线中心的距离,θ表示该点与天线轴线的夹角(天顶角),φ表示该点在水平面上的方位角。辐射强度通常用功率密度(W/m²)或场强(V/m)表示,并以分贝(dB)的形式表示相对值,以便于比较和分析。

对于理想的半波长偶极子,其三维辐射方向图可以近似表示为:

E(θ, φ) = k * sin(θ) / (sin²(θ) + (sin²(φ))

其中,E(θ, φ) 表示空间中(θ, φ) 方向上的电场强度,k 为一个与天线参数和工作频率相关的常数。从公式可以看出,当θ = π/2 (即在垂直于天线轴线的平面内) 时,辐射强度最大;当θ = 0 或 θ = π (即沿着天线轴线方向) 时,辐射强度为零。这正是“甜甜圈”形状三维辐射方向图的数学描述。 由于实际偶极子并非理想模型,其辐射方向图会受到各种因素的影响,包括:

  • 天线长度的偏差: 实际制造中,天线长度很难精确等于半波长,长度偏差会导致辐射方向图发生变形,最大辐射方向可能略微偏离垂直于天线轴线的平面。

  • 馈电点阻抗的匹配: 理想的偶极子假设具有完美的阻抗匹配,但在实际应用中,阻抗匹配不佳会导致一部分能量反射回馈电源,从而降低辐射效率并影响辐射方向图。

  • 周围环境的影响: 天线周围的物体,例如地面、建筑物等,会对电磁波的传播造成影响,从而改变天线的辐射方向图。 例如,地面效应会增强垂直极化波的辐射,而抑制水平极化波的辐射。

  • 天线元件的实际结构: 理想模型假设偶极子是无限细的导体,而实际的天线具有有限的厚度和直径,这会对高频段的辐射特性产生影响。

为了更精确地描述实际偶极子天线的辐射方向图,需要采用数值计算方法,例如矩量法(MoM)或有限元法(FEM),对天线进行建模和仿真。这些方法能够考虑天线结构的细节以及周围环境的影响,从而获得更精确的辐射方向图。

通过对三维辐射方向图的分析,我们可以了解天线在各个方向上的辐射强度,从而选择合适的安装位置和方向,以达到最佳的通信效果。例如,在无线通信系统中,我们可以根据目标接收机的方位角和天顶角,调整天线的指向,以最大限度地提高信号强度,并降低干扰。

总而言之,传统偶极子三维天线的辐射方向图是一个复杂的三维空间函数,其形状和大小受到诸多因素的影响。深入了解其辐射特性以及影响因素对于天线设计、优化和应用至关重要。 未来,随着无线通信技术的不断发展,对天线性能的要求也越来越高,对偶极子天线三维辐射方向图的精确建模和分析将继续发挥着重要的作用

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值