【分布式预测控制】基本阶跃响应模型的动态矩阵控制算法研究Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

分布式预测控制 (Distributed Predictive Control, DPC) 作为一种有效的多变量控制方法,在复杂工业过程中得到了广泛应用。动态矩阵控制 (Dynamic Matrix Control, DMC) 作为一种经典的预测控制算法,其基于阶跃响应模型的特性使其在工业实践中具有良好的鲁棒性和易实现性。本文深入研究了基于基本阶跃响应模型的动态矩阵控制算法在分布式预测控制框架下的应用。首先,阐述了分布式预测控制的基本概念和挑战,随后详细介绍了基于阶跃响应模型的DMC算法原理。进一步,探讨了将DMC算法应用于分布式预测控制架构中需要解决的关键问题,包括子系统模型辨识、协同控制策略以及鲁棒性分析。最后,对未来基于阶跃响应模型的分布式DMC算法的研究方向进行了展望。

关键词: 分布式预测控制;动态矩阵控制;阶跃响应模型;协同控制;鲁棒性

1. 引言

随着工业过程日益复杂化,传统的集中式控制方法在处理大规模、强耦合、多变量系统时面临着诸多挑战。分布式预测控制 (Distributed Predictive Control, DPC) 作为一种新兴的控制策略,通过将复杂的系统分解为多个相对独立的子系统,并采用局部预测控制律实现全局最优控制,有效地解决了集中式控制的局限性。DPC因其良好的可扩展性、容错性以及计算效率,在化工、能源、电力等领域得到了广泛关注和应用。

在众多预测控制算法中,动态矩阵控制 (Dynamic Matrix Control, DMC) 因其概念简洁、易于实现且鲁棒性较强等优点,在工业界得到广泛认可。DMC算法的核心在于利用系统的阶跃响应模型来预测未来输出,并根据预测输出与期望输出之间的偏差,计算出最优的控制增量。其基于非参数模型的特性,使得DMC无需精确的系统数学模型,更适用于实际工业过程中模型难以精确获取的场景。

然而,将DMC算法应用于分布式预测控制框架并非简单的叠加,其中存在着诸多挑战。首先,如何对各个子系统进行精确的阶跃响应模型辨识至关重要。其次,在分布式框架下,各个子系统控制器之间需要进行协同合作,以保证系统的全局稳定性与性能。此外,DMC算法自身的鲁棒性也需要针对分布式系统的特点进行进一步的研究。

本文旨在深入研究基于基本阶跃响应模型的DMC算法在分布式预测控制框架下的应用。我们将从DPC的基本概念出发,详细介绍DMC算法原理,并探讨其在分布式控制架构下的关键问题,并对未来的研究方向进行展望。

2. 分布式预测控制的基本概念与挑战

分布式预测控制是一种将复杂的大规模系统分解为若干个子系统,每个子系统拥有一个局部控制器,并通过局部控制器之间的信息交互来实现全局控制目标的控制策略。其核心思想是“分而治之”,通过协同合作实现整体系统的优化运行。

分布式预测控制的优势主要体现在以下几个方面:

  • 可扩展性: 当系统规模增大时,只需增加相应的子系统和控制器,无需重新设计整个控制架构。

  • 容错性: 某个子系统或控制器的故障对整个系统的影响较小,系统具有一定的容错能力。

  • 计算效率: 由于每个控制器只负责局部系统的控制,计算量大大降低,可以实现实时控制。

  • 模块化: 子系统和控制器可以独立开发和维护,提高了系统的灵活性。

然而,DPC也面临着一些挑战:

  • 子系统模型辨识: 如何有效地辨识每个子系统的动态特性,建立准确的局部模型,是实现DPC的基础。

  • 协同控制策略: 如何设计有效的协同控制策略,保证各个子系统控制器之间的协调运行,避免系统出现不稳定性或性能下降,是DPC的关键。

  • 鲁棒性: 如何保证DPC系统在模型不确定性、干扰等因素的影响下仍能保持良好的性能,是DPC的研究重点。

  • 分布式计算与通信: 如何在有限的通信带宽和延迟下实现高效的分布式计算和信息交互,是DPC的实际应用难题。

3. 基于阶跃响应模型的动态矩阵控制算法

动态矩阵控制 (DMC) 算法是一种基于过程阶跃响应模型的预测控制方法,其主要思想是利用历史控制输入数据和过程的阶跃响应特性预测未来输出,并根据预测输出和期望输出之间的偏差,优化未来的控制输入。DMC算法的核心要素包括:

  • 阶跃响应模型: DMC算法的核心是基于系统的阶跃响应模型建立的动态矩阵。对于单输入单输出系统,其阶跃响应模型可以表示为:

     

    scss

    y(k) = \sum_{i=1}^{N} s_i \Delta u(k-i+1)

    其中,y(k)为系统在k时刻的输出,s_i为第i步的阶跃响应系数,\Delta u(k)k时刻的控制增量,N为阶跃响应模型的阶数。

    对于多输入多输出系统,其阶跃响应模型可以扩展为一个矩阵形式。

  • 预测输出计算: 利用建立的阶跃响应模型和过去时刻的控制输入,可以预测未来多个时刻的输出:

     

    scss

    \hat{y}(k+p|k) = \hat{y}_0(k+p|k) + S \Delta U(k)

    其中,\hat{y}(k+p|k)为在k时刻预测的k+p时刻的输出,\hat{y}_0(k+p|k)为基于过去控制输入预测的k+p时刻输出,S为动态矩阵,\Delta U(k)为未来控制增量向量。

  • 优化控制律: DMC算法通过求解一个优化问题来确定最优的控制增量:

     

    scss

    \min_{\Delta U(k)} J = || \hat{Y}(k) - Y_r(k) ||^2_Q + || \Delta U(k) ||^2_R

    其中,\hat{Y}(k)为预测输出向量,Y_r(k)为期望输出向量,QR分别为误差权重矩阵和控制增量权重矩阵。 通过求解该优化问题,得到最优的控制增量序列,并将其第一个元素作用于被控对象。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值