【电力系统】基于多目标粒子群求解含风、光、柴油机、储能的微电网多目标优化问题附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源危机和环境问题的日益突出,发展清洁、高效、可持续的能源系统已成为当今社会的重要议题。微电网作为一种能够灵活接入分布式电源,实现能源就近利用,提高能源利用效率和供电可靠性的新型电力系统,受到了广泛关注。然而,微电网的优化调度是一个复杂的多目标优化问题,需要同时考虑经济性、环保性和可靠性等多个目标。本文将探讨如何运用多目标粒子群算法(Multi-Objective Particle Swarm Optimization, MOPSO)解决含风力发电、光伏发电、柴油发电机和储能系统的微电网多目标优化问题,并阐述其理论基础、具体应用以及优势与挑战。

一、 微电网多目标优化的背景与意义

微电网通常由分布式电源(如风力发电、光伏发电、柴油发电机等)、储能装置、负荷以及控制保护装置组成。其核心在于通过合理的控制策略,实现不同能源之间的协调运行,最大限度地利用可再生能源,降低对传统电网的依赖,并提高电网的整体效率和稳定性。

微电网的优化调度面临以下几个挑战:

  • 可再生能源的随机性和间歇性: 风能和太阳能具有高度的随机性和间歇性,导致微电网的功率输出不稳定,需要储能系统进行平滑和补偿。

  • 负荷需求的动态变化: 用户的用电需求随着时间和季节变化,给微电网的功率平衡带来挑战。

  • 多目标冲突: 经济性、环保性和可靠性等目标之间往往存在冲突。例如,追求最低的运行成本可能会牺牲环境效益,而追求更高的可靠性则可能增加运行成本。

因此,需要采用有效的优化算法,在考虑多种约束条件和目标函数的基础上,寻找最优的运行方案。解决微电网多目标优化问题具有重要的现实意义:

  • 提高可再生能源利用率: 通过合理的调度策略,最大化利用风能和太阳能,减少化石燃料的消耗。

  • 降低运行成本: 通过优化分布式电源的出力分配,降低微电网的运行成本,提高经济效益。

  • 减少环境污染: 减少化石燃料的使用,降低温室气体排放,改善环境质量。

  • 提高供电可靠性: 通过储能系统的充放电管理,平滑功率波动,提高微电网的供电可靠性和稳定性。

二、 多目标粒子群算法(MOPSO)理论基础

粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,模拟鸟群觅食的行为。每个粒子代表搜索空间中的一个潜在解,通过跟踪自身历史最优位置和群体最优位置来更新自身的速度和位置,最终找到全局最优解。

传统的PSO算法只能解决单目标优化问题,而MOPSO算法是其扩展,用于解决多目标优化问题。MOPSO算法的主要特点在于:

  • 非支配排序: MOPSO使用非支配排序算法对粒子进行评估,将粒子分成不同的等级,等级越高的粒子代表的解越优秀。非支配解是指在所有目标函数上都不劣于其他解,且至少在一个目标函数上优于其他解的解。

  • Pareto前沿: MOPSO的目标是找到Pareto前沿,即所有非支配解的集合。Pareto前沿上的解彼此之间无法比较优劣,每个解都代表着一种不同的权衡。

  • 外部存档: MOPSO维护一个外部存档,用于存储搜索过程中找到的非支配解。外部存档随着迭代的进行不断更新,最终逼近真实的Pareto前沿。

  • 拥挤距离: 为了保证Pareto前沿的多样性,MOPSO使用拥挤距离来评估解的密度。拥挤距离大的解周围的解较少,代表该区域的解较稀疏,更容易被选择。

  • 精英选择机制: MOPSO采用精英选择机制,根据非支配等级和拥挤距离选择优秀的粒子作为全局最优位置,引导粒子向Pareto前沿逼近。

三、 基于MOPSO求解含风、光、柴油机、储能的微电网多目标优化问题

在应用MOPSO算法解决含风、光、柴油机、储能的微电网多目标优化问题时,需要进行以下步骤:

  1. 建立微电网模型:

    • 风力发电模型: 根据风速数据,建立风力发电机的功率输出模型。通常采用分段函数或查表法描述风力发电机的功率输出特性。

    • 光伏发电模型: 根据光照强度和环境温度,建立光伏发电机的功率输出模型。通常采用基于光伏电池物理特性的数学模型或经验公式。

    • 柴油发电机模型: 建立柴油发电机的燃料消耗模型和排放模型。燃料消耗模型通常采用线性或二次函数,排放模型则考虑NOx、SO2等污染物的排放量。

    • 储能系统模型: 建立储能系统的充放电模型,包括充放电效率、容量限制和寿命模型。

    • 负荷模型: 根据历史数据,建立负荷的预测模型。

  2. 确定优化目标:

    • 经济性目标: 最小化运行成本,包括燃料成本、维护成本、以及向主网购电的成本。

    • 环保性目标: 最小化污染物排放,包括CO2、NOx、SO2等。

    • 可靠性目标: 提高供电可靠性,可以用失负荷概率(Loss of Load Probability, LOLP)或缺电期望值(Expected Energy Not Supplied, EENS)等指标衡量。

  3. 设置约束条件:

    • 功率平衡约束: 微电网内各电源的功率输出之和必须等于负荷需求。

    • 设备容量约束: 各设备的功率输出必须在其容量范围内。

    • 储能系统充放电约束: 储能系统的充放电功率和容量必须在其范围内。

    • 电压和频率约束: 微电网的电压和频率必须维持在允许范围内。

    • 设备运行约束: 如柴油发电机的最小运行时间约束等。

  4. 设计MOPSO算法:

    • 粒子编码: 将微电网的调度方案编码为粒子的位置。例如,可以采用实数编码,将每个时刻各电源的出力作为粒子的元素。

    • 速度更新公式: 采用标准的PSO速度更新公式,考虑自身历史最优位置和群体最优位置的影响。

    • 位置更新公式: 采用标准的位置更新公式,根据速度更新粒子的位置。

    • 非支配排序: 使用非支配排序算法对粒子进行评估,将粒子分成不同的等级。

    • 外部存档维护: 维护一个外部存档,用于存储搜索过程中找到的非支配解。定期更新外部存档,剔除被支配的解,并加入新的非支配解。

    • 拥挤距离计算: 计算外部存档中各解的拥挤距离,用于选择精英个体。

    • 精英选择: 根据非支配等级和拥挤距离选择优秀的粒子作为全局最优位置,引导粒子向Pareto前沿逼近。

⛳️ 运行结果

🔗 参考文献

[1] 谭兴国,王辉,张黎,et al.微电网复合储能多目标优化配置方法及评价指标[J].电力系统自动化, 2014, 000(008):7-14.DOI:10.7500/AEPS20130719005.

[2] 王金全,黄丽,杨毅.基于多目标粒子群算法的微电网优化调度[J].电网与清洁能源, 2014, 30(1):6.DOI:10.3969/j.issn.1674-3814.2014.01.009.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值