【状态估计】电力系统状态估计中的异常检测与分类附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

电力系统,作为现代社会运转的基石,其安全、稳定和经济运行至关重要。状态估计(State Estimation,SE)是电力系统运行控制中心的关键功能之一,它利用冗余的量测信息,通过数学模型对系统状态(如节点电压幅值和相角)进行最优估计,为后续的运行分析、控制和优化提供可靠的基础数据。然而,由于量测设备故障、通信干扰、网络攻击等因素的影响,状态估计的输入数据可能包含异常,这些异常会严重影响状态估计的精度,甚至导致错误的决策,进而危及电力系统的安全稳定运行。因此,电力系统状态估计中的异常检测与分类已成为电力系统研究中的一个重要且极具挑战性的课题。

本文将深入探讨电力系统状态估计中的异常检测与分类问题。首先,将对异常进行定义和分类,明确不同类型异常的特征;其次,详细阐述现有异常检测与分类方法,包括其原理、优缺点及适用场景;最后,对电力系统状态估计异常检测与分类的未来发展方向进行展望。

1. 电力系统状态估计中的异常定义与分类

在电力系统状态估计中,异常通常指的是偏离正常运行状态,且对状态估计结果产生显著影响的量测值。根据其性质和成因,异常可以分为多种类型:

  • **粗差(Gross Errors):**粗差是指由测量设备故障、数据传输错误、人为操作失误等原因引起的量测值与真实值之间的较大偏差。粗差通常表现为量测值与理论值的显著不一致,是最常见且危害最大的异常类型。例如,电流互感器(CT)故障导致电流测量值出现跳变,或者数据传输过程中出现比特翻转,都可能产生粗差。

  • **参数错误(Parameter Errors):**参数错误指的是状态估计模型中使用的网络参数(如线路阻抗、变压器变比等)与实际值不符。这种错误可能由于设备老化、维护疏忽或者网络拓扑发生变化而未及时更新模型参数所致。参数错误虽然不直接影响量测值,但会扭曲状态估计的计算过程,导致系统状态的估计偏差。

  • **拓扑错误(Topology Errors):**拓扑错误指的是状态估计模型中使用的网络拓扑结构与实际网络拓扑结构不一致。例如,开关状态的错误配置,或者线路的错误连接,都会导致拓扑错误。拓扑错误会严重影响状态估计的收敛性和精度,甚至导致状态估计发散。

  • **系统扰动(System Disturbances):**系统扰动指的是由短路故障、负荷突变、机组跳闸等引起的电力系统运行状态的突变。虽然系统扰动本身不是异常,但由于状态估计通常假设系统处于准稳态,因此剧烈的系统扰动可能导致状态估计无法准确反映系统的真实状态。

以上几种异常类型可能单独存在,也可能同时存在,增加了异常检测与分类的难度。

2. 电力系统状态估计中的异常检测方法

电力系统状态估计中的异常检测方法旨在识别出包含异常的量测数据,保证状态估计的精度和可靠性。现有异常检测方法可以大致分为以下几类:

  • **基于残差的方法(Residual-based Methods):**残差是指量测值与状态估计值之间的差异。基于残差的方法通过分析残差的统计特性来判断是否存在异常。常用的残差包括:

    基于残差的方法简单易行,计算效率高,是应用最广泛的异常检测方法。然而,基于残差的方法容易受到异常扩散效应的影响,即一个异常可能会掩盖其他异常,导致检测失败。

    • **标准化残差(Normalized Residual):**标准化残差是指残差除以其标准差。标准化残差大的量测值可能包含异常。

    • **加权残差(Weighted Residual):**加权残差考虑了量测值的精度,精度高的量测值对残差的影响更大。

    • **最大标准化残差检验(Largest Normalized Residual Test):**最大标准化残差检验是一种经典的粗差检测方法,它通过比较最大标准化残差与预设阈值来判断是否存在粗差。

    • **残差方差检验(Residual Variance Test):**残差方差检验通过比较残差方差与理论方差来判断是否存在异常。

  • **基于假设检验的方法(Hypothesis Testing Methods):**基于假设检验的方法通过构造统计检验量,对量测数据进行假设检验,判断是否存在异常。常用的基于假设检验的方法包括:

    基于假设检验的方法理论基础扎实,具有较高的检测精度。然而,基于假设检验的方法计算复杂度高,需要进行大量的假设检验,因此计算效率较低,难以满足电力系统实时运行的要求。

    • **最小二乘估计误差平方和检验(Chi-Square Test):**最小二乘估计误差平方和检验是一种常用的模型检验方法,它可以用来判断状态估计模型的有效性。如果检验结果表明模型无效,则可能存在异常。

    • **广义似然比检验(Generalized Likelihood Ratio Test,GLRT):**广义似然比检验是一种强大的异常检测方法,它可以对多种类型的异常进行检测。GLRT通过比较在假设存在异常和假设不存在异常情况下的最大似然函数值,来判断是否存在异常。

  • **基于人工智能的方法(Artificial Intelligence-based Methods):**随着人工智能技术的快速发展,越来越多的基于人工智能的方法被应用于电力系统状态估计的异常检测。常用的基于人工智能的方法包括:

    基于人工智能的方法具有较强的学习能力和泛化能力,可以处理复杂的非线性问题。然而,基于人工智能的方法需要大量的训练数据,且模型的训练和维护成本较高。

    • **神经网络(Neural Networks):**神经网络可以通过学习历史数据中的模式,建立正常运行状态的模型,然后通过比较实际运行状态与模型预测结果的差异来检测异常。

    • **支持向量机(Support Vector Machines,SVM):**支持向量机可以通过将正常运行状态的数据映射到高维空间,找到最佳超平面来区分正常数据和异常数据。

    • **模糊逻辑(Fuzzy Logic):**模糊逻辑可以通过将量测数据模糊化,然后利用模糊推理规则来判断是否存在异常。

  • **基于信息论的方法(Information Theory-based Methods):**基于信息论的方法利用信息论中的概念,如熵、互信息等,来衡量量测数据的不确定性和相关性,从而检测异常。常用的基于信息论的方法包括:

    基于信息论的方法不需要建立精确的系统模型,可以处理模型不确定性的问题。然而,基于信息论的方法对参数的选择比较敏感,且计算复杂度较高。

    • **信息熵(Information Entropy):**信息熵可以用来衡量量测数据的不确定性。异常的出现会导致量测数据的不确定性增加,从而导致信息熵增大。

    • **互信息(Mutual Information):**互信息可以用来衡量量测数据之间的相关性。异常的出现会导致量测数据之间的相关性减弱,从而导致互信息减小。

3. 电力系统状态估计中的异常分类方法

异常分类是指在检测到异常后,进一步识别出异常的类型,为后续的异常处理提供依据。异常分类方法通常与异常检测方法相结合,构成完整的异常检测与分类系统。

  • **基于规则的方法(Rule-based Methods):**基于规则的方法通过定义一系列规则,根据量测数据的特征来判断异常的类型。例如,如果某个量测值的绝对值超过预设阈值,则可以判断该量测值为粗差。

  • **基于模式识别的方法(Pattern Recognition-based Methods):**基于模式识别的方法通过学习不同类型异常的特征,建立分类模型,然后根据量测数据的特征将异常分类。常用的基于模式识别的方法包括:

    • **决策树(Decision Trees):**决策树可以通过构建树状结构,根据量测数据的特征将异常分类。

    • **贝叶斯分类器(Bayesian Classifiers):**贝叶斯分类器可以通过计算后验概率,将异常分类到概率最大的类别。

    • **支持向量机(Support Vector Machines,SVM):**支持向量机可以通过将不同类型的异常数据映射到高维空间,找到最佳超平面来区分不同的异常类型。

  • **专家系统(Expert Systems):**专家系统是一种基于知识的系统,它通过将电力系统专家的经验和知识表示为规则,然后利用这些规则来判断异常的类型。

  • 基于深度学习的方法(Deep Learning-based Methods): 近年来,深度学习技术在图像识别、自然语言处理等领域取得了显著的成果。一些研究者尝试将深度学习技术应用于电力系统状态估计的异常分类,例如使用卷积神经网络(Convolutional Neural Networks,CNN)提取量测数据的特征,然后使用循环神经网络(Recurrent Neural Networks,RNN)对异常进行分类。

4. 电力系统状态估计异常检测与分类的未来发展方向

电力系统状态估计异常检测与分类的研究虽然取得了显著的进展,但仍然面临着许多挑战。未来的发展方向主要包括:

  • **提高异常检测的精度和鲁棒性:**现有的异常检测方法容易受到异常扩散效应的影响,且对参数的选择比较敏感。未来的研究需要开发更加精确和鲁棒的异常检测方法,提高其在复杂环境下的适应性。

  • **提高异常分类的准确性:**现有的异常分类方法对复杂类型的异常识别能力有限。未来的研究需要开发更加准确的异常分类方法,能够有效区分不同类型的异常。

  • **考虑模型不确定性的影响:**现有的状态估计方法通常假设模型是精确的,但实际电力系统模型存在不确定性。未来的研究需要开发能够处理模型不确定性的状态估计方法,提高状态估计的可靠性。

  • **发展实时异常检测与分类方法:**电力系统实时运行对状态估计的计算速度提出了更高的要求。未来的研究需要开发更加高效的异常检测与分类方法,能够满足电力系统实时运行的需求。

  • **利用大数据和人工智能技术:**电力系统运行产生海量数据,这些数据蕴藏着丰富的知识。未来的研究需要充分利用大数据和人工智能技术,挖掘量测数据中的潜在模式,提高异常检测与分类的性能。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值