基于LEACH的随机网络生成无线传感器网络路由协议的仿真比较附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无线传感器网络 (WSN) 作为一种新兴的技术,已在环境监测、智能家居、医疗保健和工业自动化等领域展现出巨大的应用潜力。由于传感器节点通常由电池供电,且部署在无人值守的环境中,因此能量效率是 WSN 设计的关键挑战。路由协议作为 WSN 的核心组成部分,直接影响着网络的能量消耗和寿命。其中,LEACH (Low-Energy Adaptive Clustering Hierarchy) 协议作为一种典型的层次型路由协议,因其简单易行且能有效延长网络寿命而被广泛研究和改进。本文将围绕基于 LEACH 的随机网络生成的无线传感器网络路由协议展开仿真比较,深入分析其性能优劣,并探讨其在实际应用中的可行性。

一、LEACH协议概述

LEACH 协议是一种基于簇的能量有效的路由协议,其主要思想是将网络中的节点动态地划分为簇,由簇头 (Cluster Head, CH) 负责收集簇内成员节点的数据,并将其聚合后发送到基站 (Base Station, BS)。LEACH 协议的关键特点在于其簇头的周期性轮换。每一轮,节点通过一个概率阈值来竞争成为簇头,从而避免特定节点因长期担任簇头而过早耗尽能量。簇的形成过程主要包括以下几个步骤:

  1. 簇头选举: 每个节点随机生成一个0到1之间的数,如果该数小于阈值T(n),则该节点成为本轮的簇头。阈值T(n)的计算公式如下:

    T(n) = p / (1 - p * (r mod (1/p))),  if n ∈ G  
    T(n) = 0, otherwise  

    其中,p是节点成为簇头的期望概率,r是当前轮数,G是最近1/p轮未成为簇头的节点集合。该公式保证了每个节点在1/p轮内平均成为一次簇头,从而实现了能量的均衡消耗。

  2. 簇的建立: 簇头选出后,会广播一个消息,宣布自己成为簇头。非簇头节点根据接收到的簇头广播信号的强度,选择加入最近的簇。

  3. 数据传输: 每个簇的成员节点在分配的时隙内将数据发送给簇头。簇头接收到来自簇内节点的数据后,进行数据融合,减少数据量,然后将融合后的数据发送到基站。

  4. 簇头轮换: 经过一定的时间后,进入下一轮簇头选举,重复上述过程。

LEACH 协议通过簇头轮换和数据融合,有效地降低了节点的能量消耗,延长了网络的生存时间。然而,LEACH 协议也存在一些局限性,例如,簇头随机选择可能导致簇头分布不均匀,距离基站较远的簇头需要消耗更多的能量进行数据传输,这可能会导致某些区域的节点过早耗尽能量。

二、基于LEACH的改进协议

为了克服LEACH协议的局限性,研究人员提出了多种基于LEACH的改进协议,主要集中在以下几个方面:

  • 簇头选择优化: 一些协议尝试改进簇头选择机制,考虑节点剩余能量、节点密度、节点与基站的距离等因素,以选择更合适的节点作为簇头,从而均衡网络能量消耗。例如,能量感知LEACH (Energy-Efficient LEACH, EELEACH) 协议将节点的剩余能量作为簇头选择的一个重要指标,使剩余能量较高的节点更容易成为簇头。

  • 簇的优化: 另一些协议则致力于优化簇的结构,例如,通过调整簇的半径、限制簇的大小等方式,来减少簇内节点的能量消耗。例如,LEACH-C (LEACH-Centralized) 协议利用基站掌握的全局信息,进行集中的簇头选择和簇的建立,可以获得更优的簇结构。

  • 数据传输优化: 还有一些协议尝试优化数据传输过程,例如,采用多跳路由、中继节点等方式,来缩短簇头与基站之间的距离,从而减少数据传输的能量消耗。例如,Power-Efficient Gathering in Sensor Information Systems (PEGASIS) 协议采用链式结构进行数据传输,避免了簇头的随机选择,从而降低了节点的能量消耗。

三、仿真环境与评价指标

为了对基于LEACH的随机网络生成无线传感器网络路由协议进行仿真比较,本文将采用MATLAB作为仿真平台,并构建一个随机部署的 WSN 环境。该环境的主要参数包括:

  • 网络规模:

     100个节点随机分布在一个100m x 100m的区域内。

  • 基站位置:

     基站位于网络区域的中心位置(50m, 50m)。

  • 节点初始能量:

     每个节点的初始能量设置为 0.5J。

  • 通信模型:

     采用自由空间模型和多径衰落模型。

  • 数据融合率:

     簇头对收集到的数据进行融合,数据量减少50%。

  • 簇头概率:

     LEACH 协议的簇头概率设置为 0.05。

评价指标将主要包括以下几个方面:

  • 网络生存时间:

     网络中第一个节点死亡的时间。

  • 网络寿命:

     网络中所有节点死亡的时间。

  • 节点平均剩余能量:

     在不同时间点的网络中节点的平均剩余能量。

  • 数据传输量:

     基站接收到的数据包的总数。

四、仿真结果与分析

本文将对LEACH协议和几种典型的LEACH改进协议进行仿真比较,例如LEACH-C 和 EELEACH 协议。通过对仿真结果进行分析,可以得到以下结论:

  • 网络生存时间和寿命:

     LEACH-C 协议由于采用了集中的簇头选择和簇的建立方式,可以获得更优的簇结构,因此其网络生存时间和寿命通常比LEACH协议更长。EELEACH 协议由于考虑了节点的剩余能量,使剩余能量较高的节点更容易成为簇头,因此其网络生存时间和寿命也比LEACH协议更长。

  • 节点平均剩余能量:

     在相同的时间内,LEACH-C 和 EELEACH 协议的网络中节点的平均剩余能量通常比LEACH协议更高,这表明这些协议能够更有效地均衡网络的能量消耗。

  • 数据传输量:

     LEACH-C 和 EELEACH 协议在网络生存时间内通常能够传输更多的数据,这表明这些协议能够更有效地利用网络的能量资源。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值