✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
在偏远地区或电力难以接入的区域,独立的能源系统是保障电力供应的关键。由光伏、电池和柴油发电机组组成的混合能源系统,凭借其能源互补优势,成为研究热点。其中,能源管理系统的主干网对于优化能源分配、提升系统稳定性和经济性至关重要。
二、系统组成与工作原理
(一)光伏系统
光伏系统通过太阳能电池板将光能转化为电能。其输出功率受光照强度、温度等因素影响,具有间歇性和波动性。在白天光照充足时,光伏系统可大量发电。
(二)电池储能系统
电池储能系统可在光伏电力过剩时充电,在光伏电力不足或负荷需求较大时放电,起到 “削峰填谷” 的作用,平滑电力输出,提高能源利用效率。
(三)柴油发电机组
柴油发电机组作为备用电源,在光伏和电池储能无法满足负荷需求时启动发电。但柴油发电成本较高且会产生污染物,应尽量减少其运行时间。
(四)能源管理系统主干网
主干网是整个能源管理系统的核心枢纽,负责收集各部分的运行数据,如光伏输出功率、电池荷电状态、负荷需求等,并依据预设的控制策略进行能源分配和调度决策。
三、主干网的功能需求
(一)数据采集与监测
实时准确地采集光伏、电池、柴油发电机组以及负荷的各项参数,如电压、电流、功率、温度等,以便对系统状态进行全面监测。
(二)能源分配与调度
根据采集的数据和预设的优化目标(如成本最低、排放最少、可靠性最高等),制定合理的能源分配方案,决定光伏、电池和柴油发电机组的出力。
(三)系统协调与控制
协调各能源单元的运行,避免出现功率冲突或设备损坏。例如,在电池电量过低时,及时启动柴油发电机组,确保系统稳定供电。
(四)故障诊断与保护
快速检测系统中的故障,如光伏板故障、电池过充过放、柴油发电机组异常等,并采取相应的保护措施,防止故障扩大。
四、主干网的架构设计
(一)分层架构
可采用分层架构,包括数据采集层、控制决策层和执行层。数据采集层负责收集现场数据;控制决策层根据数据进行分析和决策;执行层按照决策结果控制各能源单元的运行。
(二)通信网络
主干网需要可靠的通信网络,如以太网、无线通信等,实现各层之间以及各能源单元之间的数据传输和指令交互。
(三)软件系统
开发功能强大的能源管理软件,具备数据处理、优化算法、可视化界面等功能,方便操作人员监控和管理系统。
五、关键技术研究
(一)优化算法
研究先进的优化算法,如粒子群优化算法、遗传算法等,用于求解能源分配的最优解,提高系统的经济性和可靠性。
(二)预测技术
利用天气预报数据和历史负荷数据,对光伏输出功率和负荷需求进行预测,为能源调度提供更准确的依据。
(三)分布式控制
采用分布式控制技术,使各能源单元在一定程度上具备自主决策能力,提高系统的灵活性和鲁棒性。
六、案例分析
以某偏远海岛的独立能源系统为例,该系统安装了一定规模的光伏板、电池储能和柴油发电机组。通过构建能源管理系统主干网,实施优化的能源调度策略,成功降低了柴油的消耗,提高了光伏的消纳比例,同时保证了海岛的可靠供电。
七、结论与展望
独立光伏 - 电池 - 柴油发电机组的能源管理系统的主干网对于实现能源的高效利用和可靠供应具有重要意义。当前,尽管在相关技术研究和应用方面已取得一定成果,但仍需在优化算法的精度、预测技术的准确性以及系统的智能化水平等方面进一步深入研究,以推动独立混合能源系统的广泛应用。
⛳️ 运行结果
🔗 参考文献
[1] 韦韩英.船舶柴油发电机系统仿真[D].上海海事大学;上海海运学院,2003.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇