✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着能源结构的转型和环境保护意识的日益增强,分布式电源(Distributed Generation, DG)在全球范围内得到了迅猛发展。分布式电源,通常指位于用户附近,容量较小且接入配电网的电源,包括光伏发电、风力发电、生物质能发电、小型水力发电以及燃料电池等。分布式电源的并网,一方面可以提高能源利用效率、降低输配电损耗、增强供电可靠性,另一方面也给传统电网带来了前所未有的挑战,如电压稳定、潮流控制、保护协调以及电能质量等。因此,深入研究分布式电源并网对电网的影响,进行全面的风险评估,对于保障电网安全稳定运行,促进分布式电源健康发展至关重要。
分布式电源并网对电网的影响
分布式电源并网对电网的影响是多方面的,既有积极的促进作用,也伴随着潜在的风险。
-
电压影响: 分布式电源的接入可以直接影响电网的电压水平。在负荷较轻时,分布式电源的输出可能导致局部电压升高,甚至超出允许范围,威胁设备安全。特别是在分布式电源集中接入的情况下,电压抬升问题更为显著。反之,在负荷高峰期,分布式电源的输出可以缓解电网的供电压力,降低电压降落,提高电压稳定性。因此,需要精确评估分布式电源的输出功率与电网负荷之间的平衡关系,制定合理的电压控制策略。
-
潮流影响: 分布式电源的接入改变了传统的单向潮流模式,使配电网呈现出多点供电、双向潮流的特点。这种变化一方面可以缓解输电线路的拥塞,提高线路的利用率,另一方面也增加了潮流计算的复杂性。由于分布式电源的出力具有间歇性和波动性,导致电网潮流的动态变化更为频繁,需要实时监测和预测,以确保潮流分布在安全范围内。此外,双向潮流可能导致配电网的反向潮流,对配电网的规划和运行带来新的挑战。
-
保护影响: 分布式电源并网可能对电网的保护系统产生不利影响。传统的配电网保护是基于辐射状网络设计的,保护装置的动作方向是单向的。分布式电源的接入改变了配电网的拓扑结构,可能导致保护装置误动或拒动,影响供电的可靠性。例如,当配电网发生短路故障时,分布式电源可能向故障点注入电流,改变故障电流的分布,使得传统的过流保护难以准确动作。因此,需要对现有的保护系统进行重新评估和优化,以适应分布式电源的接入。
-
短路电流影响: 分布式电源的接入会提高配电网的短路电流水平。如果短路电流超过设备的承受能力,可能导致设备损坏,甚至引发安全事故。特别是对于采用同步发电机或并网逆变器的分布式电源,其对短路电流的贡献不可忽视。因此,在分布式电源接入之前,需要进行详细的短路电流计算,评估现有设备的耐受能力,必要时需要更换或升级设备,以确保电网的安全运行。
-
电能质量影响: 分布式电源的接入可能影响电网的电能质量。例如,采用逆变器接入的光伏发电,可能产生谐波、电压闪变、三相不平衡等问题,影响其他用户的用电设备的正常运行。特别是当分布式电源的渗透率较高时,这些问题可能更为突出。因此,需要采取有效的电能质量控制措施,如安装滤波器、调整控制策略等,以保证电网的电能质量满足相关标准。
-
电网规划影响: 分布式电源的接入对电网的规划提出了新的要求。传统的电网规划主要考虑集中式电源的接入,而忽略了分布式电源的影响。随着分布式电源的渗透率不断提高,需要将分布式电源纳入电网规划的考虑范围,优化电网的结构和容量,以适应分布式电源的接入。此外,还需要考虑分布式电源的分布位置、出力特性等因素,进行精细化的规划,以提高电网的可靠性和经济性。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇