【无功优化】基于多目标粒子群优化算法的配电网无功功率优化研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要: 配电网作为电力系统的重要组成部分,其运行效率和可靠性直接影响着整个电力系统的稳定性和经济性。无功功率优化作为配电网运行优化的重要手段,通过合理调整无功补偿设备和电压控制设备的出力,可以有效降低网络损耗、提高电压质量、改善功率因数,从而实现配电网的经济高效运行。本文针对传统无功功率优化方法的局限性,提出了一种基于多目标粒子群优化(Multi-Objective Particle Swarm Optimization,MOPSO)算法的配电网无功功率优化策略。该策略综合考虑了网损最小化、电压偏差最小化和电压稳定性裕度最大化等多个目标,利用MOPSO算法强大的全局搜索能力和快速收敛特性,获得帕累托最优解集,为决策者提供多种优化方案,从而提高配电网运行的经济性和可靠性。

关键词: 配电网;无功功率优化;多目标优化;粒子群优化算法;帕累托最优解

1. 引言

随着经济的快速发展和社会对电力需求的日益增长,配电网的规模和复杂程度不断提高。然而,配电网普遍存在着负荷密度低、线路长、末端电压低、损耗大等问题,严重制约了其运行效率和供电质量。无功功率是影响配电网运行效率的重要因素之一,合理进行无功功率优化能够有效缓解上述问题,提高配电网运行的经济性和可靠性。

传统的无功功率优化方法主要包括解析法、数学规划法和智能优化算法等。解析法基于灵敏度分析,计算效率高,但求解精度受限,且难以处理复杂约束条件。数学规划法如线性规划、非线性规划等,能够获得全局最优解,但计算量大,对初始值敏感,且容易陷入局部最优。随着人工智能技术的发展,智能优化算法如遗传算法、模拟退火算法、粒子群优化算法等逐渐被应用于无功功率优化。这些算法具有全局搜索能力强、对初始值不敏感等优点,能够有效地解决复杂的无功功率优化问题。

然而,传统的智能优化算法通常以单一目标函数为优化目标,难以满足配电网日益增长的对多目标优化需求。例如,单纯追求网损最小化可能会导致电压质量下降,单纯追求电压质量的提高可能会增加网损。因此,需要综合考虑多个优化目标,在各个目标之间取得平衡,才能实现配电网运行的整体优化。

基于此,本文提出了一种基于多目标粒子群优化算法的配电网无功功率优化策略。该策略综合考虑了网损最小化、电压偏差最小化和电压稳定性裕度最大化等多个目标,利用MOPSO算法强大的全局搜索能力和快速收敛特性,获得帕累托最优解集,为决策者提供多种优化方案,从而提高配电网运行的经济性和可靠性。

2. 配电网无功功率优化模型

本文构建的配电网无功功率优化模型主要包括目标函数、约束条件和决策变量三个部分。

2.1 目标函数

本文选取了三个目标函数,分别是网损最小化、电压偏差最小化和电压稳定性裕度最大化。

  • 网损最小化 (Minimization of Power Loss): 配电网的网损是反映其运行效率的重要指标。降低网损可以提高电能利用率,减少能源浪费。网损最小化目标函数可以表示为:

     

    ini

    f1 = min P_loss = Σ (I_ij^2 * R_ij)  

    其中,P_loss为网损,I_ij为支路ij的电流,R_ij为支路ij的电阻,求和对象为所有支路。

  • 电压偏差最小化 (Minimization of Voltage Deviation): 电压质量是衡量配电网供电质量的重要指标。电压偏差过大可能会影响用户的正常用电。电压偏差最小化目标函数可以表示为:

     

    ini

    f2 = min VD = Σ |V_i - V_rated|  

    其中,VD为电压偏差,V_i为节点i的电压幅值,V_rated为额定电压,求和对象为所有节点。

  • 电压稳定性裕度最大化 (Maximization of Voltage Stability Margin): 电压稳定性是保障配电网安全运行的重要因素。电压稳定性裕度越大,配电网抵御电压崩溃的能力越强。电压稳定性裕度最大化目标函数可以表示为:

     

    ini

    f3 = max VSM  

    其中,VSM为电压稳定性裕度。电压稳定性裕度的计算可以采用多种方法,本文假设采用连续功率流法计算临界电压,则VSM = (P_crit - P_load) / P_load,其中P_crit为临界功率,P_load为当前负荷功率。

2.2 约束条件

配电网无功功率优化需要满足多种约束条件,主要包括:

  • 功率平衡约束:

     

    scss

    P_Gi - P_Di = V_i * Σ V_j * (G_ij * cos(θ_ij) + B_ij * sin(θ_ij))  
    Q_Gi - Q_Di = V_i * Σ V_j * (G_ij * sin(θ_ij) - B_ij * cos(θ_ij))  

    其中,P_GiQ_Gi分别为节点i的发电有功功率和无功功率,P_DiQ_Di分别为节点i的负荷有功功率和无功功率,V_iV_j分别为节点ij的电压幅值,G_ijB_ij分别为节点ij之间的电导和电纳,θ_ij为节点ij之间的电压相角。

  • 电压约束:

     

    V_min <= V_i <= V_max  

    其中,V_minV_max分别为节点i的电压下限和上限。

  • 支路容量约束:

     

    I_ij <= I_max  

    其中,I_ij为支路ij的电流,I_max为支路ij的最大允许电流。

  • 无功补偿设备容量约束:

     

    Q_cmin <= Q_ci <= Q_cmax  

    其中,Q_cminQ_cmax分别为无功补偿设备i的无功出力下限和上限,Q_ci为无功补偿设备i的无功出力。

  • 变压器分接头位置约束:

     

    T_min <= T_i <= T_max  

    其中,T_minT_max分别为变压器i的分接头位置下限和上限,T_i为变压器i的分接头位置。

⛳️ 运行结果

🔗 参考文献

[1] 徐雷.基于改进粒子群算法的电力系统无功优化[D].西华大学[2025-03-17].DOI:CNKI:CDMD:2.1016.283281.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值