✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要中所述的论文提出了一种新颖的基于博弈论的自主决策框架,旨在解决多智能体集群的任务分配问题。该研究的核心在于,如何在自私的智能体之间实现合作,并保证在分散式环境中,具有社会抑制的智能体能够收敛到一个纳什稳定的划分(即社会共识),且收敛时间为多项式级别。 该算法的设计简单易执行,依赖于智能体之间通过强连通的通信网络进行的局部交互,即使在异步环境下也能有效运作。论文不仅从数学上对解的次优性的下界进行了分析,还证明了如果社会效用是相对于协同工作智能体数量的非递减函数,则至少可以保证50%的次优性。通过数值实验,该框架展现了良好的可扩展性、对动态环境的快速适应性以及在现实环境中的鲁棒性。本文将深入剖析该框架的理论基础、算法设计以及实验验证,以期更全面地理解其在解决多智能体任务分配问题上的优势和局限。
1. 引言:多智能体任务分配的挑战与意义
多智能体系统(Multi-Agent System, MAS)已被广泛应用于诸多领域,例如机器人群、自动驾驶、分布式计算和社交网络等。 在这些应用中,如何有效地分配任务给不同的智能体,以实现整体性能的最优化,是一个至关重要的问题。然而,多智能体任务分配面临着诸多挑战,例如:
- 分散式决策:
在许多实际场景中,不存在一个中央控制器来统一协调所有智能体的行动。每个智能体需要根据自身的局部信息,做出自主决策。
- 智能体的异构性:
不同的智能体可能拥有不同的能力、资源和目标,需要考虑如何根据这些差异进行任务分配。
- 环境的动态性:
环境可能随着时间变化而变化,例如任务的出现、消失或属性变化,智能体需要能够适应这些变化并重新调整任务分配。
- 智能体的自私性:
每个智能体可能只关心自身的利益,而非整体利益,导致任务分配结果并非最优。
- 通信的限制性:
智能体之间的通信可能受到距离、带宽、可靠性等因素的限制,需要考虑如何在有限的通信条件下实现有效的任务分配。
传统的集中式优化方法,由于需要全局信息和高计算复杂度,难以应对上述挑战。因此,研究分散式的自主决策算法,以解决多智能体任务分配问题,具有重要的理论和应用价值。
2. 基于博弈论的自主决策框架
论文提出的框架采用了博弈论的思想,将任务分配问题建模为一个合作博弈。 每个智能体被视为一个博弈参与者,其目标是最大化自身的效用函数。效用函数不仅取决于智能体自身所承担的任务,还取决于其与其他智能体的协同工作情况。
2.1. 博弈模型与纳什稳定
具体来说,该框架定义了一个任务分配博弈,其中:
- 参与者:
一组智能体。
- 策略:
每个智能体的策略是指其选择承担的任务集合。
- 效用函数:
每个智能体的效用函数取决于其所承担的任务和与其协同工作的智能体数量。
该框架的目标是找到一个纳什稳定的任务分配方案。纳什稳定是指一种状态,在该状态下,没有任何一个智能体可以通过单方面改变自己的策略来提高自身的效用。 换句话说,如果一个任务分配方案是纳什稳定的,那么任何一个智能体都不愿意单独改变自己的任务分配策略。
2.2. 社会抑制与社会共识
论文特别考虑了具有社会抑制的智能体。社会抑制是指一种倾向,即智能体不愿意与过多的其他智能体协同工作。 这种社会抑制可能是由于资源竞争、通信拥塞或其他因素引起的。
为了应对社会抑制,该框架引入了一种特殊的效用函数,该效用函数包含了对协同工作智能体数量的惩罚项。 这种惩罚项可以促使智能体分散工作,从而避免过度拥挤和资源竞争。
通过这种方式,该框架的目标不仅仅是找到一个纳什稳定的任务分配方案,而是找到一个能够反映智能体的社会抑制的纳什稳定的方案,即一个社会共识。
2.3. 分散式算法与收敛性保证
为了实现自主决策,该框架提出了一种分散式算法。 该算法的核心思想是:每个智能体根据自身的局部信息,不断地调整自己的策略,以期最大化自身的效用。
该算法依赖于智能体之间的局部交互。每个智能体可以与其他智能体进行通信,了解它们的策略和效用。 通过这些局部交互,智能体可以逐渐调整自己的策略,最终达到一个纳什稳定的任务分配方案。
论文证明了该分散式算法可以保证在多项式时间内收敛到一个纳什稳定的划分,即社会共识。 这一结果对于实际应用具有重要的意义,因为它表明该算法可以在合理的时间内找到一个可行的任务分配方案。
3. 次优性分析与性能保证
尽管该算法可以保证收敛到一个纳什稳定的任务分配方案,但该方案可能并非全局最优的。 为了评估该算法的性能,论文对解的次优性进行了分析。
3.1. 次优性下界
论文推导了次优性的下界。 次优性是指当前解与全局最优解之间的差距。 次优性的下界是指次优性可能达到的最小值。
通过推导次优性的下界,可以对该算法的性能有一个更清晰的认识。 知道次优性的下界,可以帮助我们判断该算法是否适用于特定的应用场景。
3.2. 50%次优性保证
论文还证明了,如果社会效用是相对于协同工作智能体数量的非递减函数,则至少可以保证50%的次优性。 这一结果表明,在某些特定条件下,该算法可以提供较好的性能保证。
这意味着,即使该算法找到的不是全局最优解,但至少可以保证其性能不会低于全局最优解的50%。 这种性能保证对于实际应用具有重要的价值,因为它表明该算法可以提供一个相对合理的任务分配方案。
4. 数值实验与性能验证
为了验证该框架的有效性,论文进行了大量的数值实验。 这些实验模拟了各种不同的场景,包括:
- 不同数量的智能体和任务
- 不同类型的效用函数
- 不同的通信网络拓扑
- 动态变化的环境
实验结果表明,该框架具有良好的可扩展性、对动态环境的快速适应性以及在现实环境中的鲁棒性。
⛳️ 运行结果
🔗 参考文献
[1] Jang I , Shin H S , Tsourdos A .Anonymous Hedonic Game for Task Allocation in a Large-Scale Multiple Agent System[J].IEEE Transactions on Robotics, 2017.DOI:10.1109/TRO.2018.2858292.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇