✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 随着全球能源结构的转型加速,风电和光伏等可再生能源的装机容量迅速增长。然而,风电和光伏发电具有间歇性、波动性和随机性的特点,大规模并网对电力系统的稳定运行带来了严峻挑战。储能技术作为解决可再生能源并网问题的重要手段,受到了广泛关注。本文围绕风电光伏混合储能系统展开研究,重点探讨了基于小波包分解的功率波动平抑方法,分析了储能系统在平抑波动前后的性能变化,并对储能系统的容量配置、频谱特性以及并网功率波动情况进行了深入研究,旨在为提高风电光伏混合发电系统的并网友好性和经济性提供理论支持和实践参考。
关键词: 风电光伏混合储能,小波包分解,功率波动平抑,容量配置,频谱分析,并网功率波动
1. 引言
在应对气候变化和能源安全挑战的背景下,可再生能源在全球能源结构中的比例持续上升。风电和光伏作为最具发展潜力的可再生能源,近年来得到了快速发展。然而,风电和光伏发电受到自然条件的影响,具有固有的间歇性、波动性和随机性,导致电网负荷难以预测,影响电网的稳定性、安全性和经济性。因此,如何有效平抑风电光伏发电的波动性,提高其并网质量,成为了当前可再生能源发展面临的重要挑战。
储能技术具有快速响应、灵活调节的特点,能够有效地平抑风电光伏发电的功率波动,提高电力系统的稳定性和可靠性。风电光伏混合储能系统能够充分发挥风电和光伏发电的互补优势,降低储能系统的配置成本,提高储能系统的利用率。因此,深入研究风电光伏混合储能系统的功率波动平抑方法、容量配置、频谱特性以及并网功率波动情况,对于促进可再生能源的大规模应用具有重要意义。
2. 基于小波包分解的功率波动平抑方法
针对风电光伏发电的功率波动,本文采用基于小波包分解的功率波动平抑方法。小波包分解是一种时频分析方法,能够将信号分解成不同频率的子带信号,并根据子带信号的能量分布,选择合适的子带信号进行重构,从而实现信号的去噪和平滑。
具体而言,本文首先对风电光伏混合发电系统的功率输出进行小波包分解,将功率信号分解成不同频率的子带信号。然后,根据不同子带信号的能量分布,将高频子带信号视为波动成分,低频子带信号视为趋势成分。通过滤除高频子带信号,并重构剩余子带信号,可以得到平滑后的功率信号。
储能系统根据原始功率信号和平滑后的功率信号之间的差异,实时调整充放电功率,以平抑风电光伏发电的功率波动。当原始功率信号大于平滑后的功率信号时,储能系统放电,将多余的能量注入电网;当原始功率信号小于平滑后的功率信号时,储能系统充电,吸收电网的能量。
3. 储能系统平抑波动前后性能分析
为了评估储能系统平抑功率波动的效果,本文对储能系统在平抑波动前后的性能进行了分析。主要考察以下指标:
- 功率波动率 (Power Fluctuation Rate):
用于衡量功率信号的波动程度,定义为功率信号的标准差与平均值的比值。
- 最大爬坡率 (Maximum Ramp Rate):
用于衡量功率信号变化的最大速率,定义为相邻两个时间点功率差的最大值。
- 总谐波失真 (Total Harmonic Distortion, THD):
用于衡量功率信号的谐波含量,定义为谐波成分的有效值与基波成分有效值的比值。
通过对比储能系统平抑波动前后功率波动率、最大爬坡率和总谐波失真的变化,可以评估储能系统在平抑功率波动方面的性能。实验结果表明,采用基于小波包分解的功率波动平抑方法,可以有效地降低功率波动率和最大爬坡率,降低功率信号的总谐波失真,提高风电光伏发电的并网质量。
4. 储能系统容量配置
储能系统的容量配置是影响系统性能和经济性的重要因素。容量过小,无法有效地平抑功率波动;容量过大,会增加系统成本,降低储能系统的利用率。
本文采用一种基于功率平滑度的储能系统容量配置方法。该方法首先确定允许的功率波动范围,然后根据风电光伏混合发电系统的功率输出特性,计算满足功率平滑度要求的最小储能容量。
具体而言,本文首先根据电网的稳定性和安全性要求,确定允许的功率波动范围。然后,根据风电光伏混合发电系统的功率输出数据,计算在不同储能容量下,平滑后的功率信号的波动程度。当平滑后的功率信号的波动程度满足允许的功率波动范围时,对应的储能容量即为满足要求的最小储能容量。
该方法综合考虑了电网的要求和风电光伏发电的特性,能够有效地确定储能系统的容量,实现经济性和性能的平衡。
5. 储能系统频谱分析
频谱分析可以揭示功率信号的频率成分和能量分布,对于了解功率波动的特性,优化储能系统的控制策略具有重要意义。
本文采用快速傅里叶变换 (Fast Fourier Transform, FFT) 对储能系统充放电功率信号进行频谱分析。通过分析充放电功率信号的频谱,可以了解储能系统在不同频率上的能量需求,从而优化储能系统的控制策略,提高储能系统的利用率和寿命。
例如,如果充放电功率信号的频谱主要集中在低频区域,说明储能系统主要用于平抑低频波动。此时,可以选择能量型储能系统,以降低系统成本。如果充放电功率信号的频谱分布较为均匀,说明储能系统需要同时平抑高频和低频波动。此时,可以选择功率型储能系统,以满足快速响应的要求。
6. 并网功率波动分析
并网功率波动直接影响电网的稳定性和安全性。本文对风电光伏混合储能系统并网后的功率波动情况进行了分析。
主要考察以下指标:
- 并网点电压波动 (Voltage Fluctuation at Grid Connection Point):
用于衡量并网点电压的波动程度。
- 并网点电流谐波 (Current Harmonics at Grid Connection Point):
用于衡量并网点电流的谐波含量。
- 频率稳定度 (Frequency Stability):
用于衡量电网频率的稳定程度。
通过分析并网点电压波动、电流谐波和频率稳定度的变化,可以评估风电光伏混合储能系统对电网的影响。实验结果表明,通过合理配置储能容量和优化控制策略,可以有效地降低并网点电压波动和电流谐波,提高电网频率稳定度,提高风电光伏混合发电系统的并网友好性。
7. 结论
本文围绕风电光伏混合储能系统展开研究,重点探讨了基于小波包分解的功率波动平抑方法,分析了储能系统在平抑波动前后的性能变化,并对储能系统的容量配置、频谱特性以及并网功率波动情况进行了深入研究。
研究结果表明:
-
基于小波包分解的功率波动平抑方法能够有效地降低风电光伏发电的功率波动率和最大爬坡率,提高功率信号的总谐波失真。
-
基于功率平滑度的储能系统容量配置方法能够有效地确定储能系统的容量,实现经济性和性能的平衡。
-
通过频谱分析可以了解储能系统在不同频率上的能量需求,从而优化储能系统的控制策略。
-
通过合理配置储能容量和优化控制策略,可以有效地降低并网点电压波动和电流谐波,提高电网频率稳定度,提高风电光伏混合发电系统的并网友好性。
未来的研究方向可以包括:
-
研究更加高效的功率波动平抑方法,例如基于深度学习的功率预测和控制方法。
-
研究考虑多种因素的储能系统容量优化配置方法,例如考虑电力市场的价格信号和电网的调度需求。
-
研究更加复杂的储能系统控制策略,例如考虑储能系统的寿命和维护成本。
⛳️ 运行结果
🔗 参考文献
[1] 韩晓娟,陈跃燕,张浩,等.基于小波包分解的混合储能技术在平抑风电场功率波动中的应用[J].中国电机工程学报, 2013, 33(19):8-13.
[2] 马伟,王玮,吴学智,等.平抑光伏并网功率波动的混合储能系统优化调度策略[J].电力系统自动化, 2019, 43(3):9.DOI:10.7500/AEPS20180213006.
[3] 庞明,史仪凯,袁小庆,等.平抑风电功率波动混合储能系统容量优化方法[J].西北工业大学学报, 2016, 34(3):6.DOI:10.3969/j.issn.1000-2758.2016.03.021.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇