【EI复现】基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

近年来,能源转型和电力市场自由化的加速发展,虚拟电厂(Virtual Power Plant,VPP)作为一种灵活、高效的能源聚合模式,受到越来越多的关注。多虚拟电厂(Multi-VPP,MVPP)的协同运作,能够进一步提升资源利用效率,降低运营成本,增强电力系统的稳定性和可靠性。然而,MVPP间的复杂交互和竞争关系,以及日益复杂的电力市场环境,对MVPP的定价策略和能量管理提出了更高的要求。

本文旨在复现一篇以元模型优化算法为基础,解决主从博弈框架下多虚拟电厂动态定价和能量管理问题的优秀研究(以下简称“原研究”)。我们将深入剖析其核心思路和方法,包括主从博弈模型的构建、元模型优化算法的应用,以及动态定价和能量管理策略的制定,力求准确再现其研究成果,并对其贡献和潜在改进方向进行探讨。

一、原研究的核心问题与挑战

原研究聚焦于MVPP在电力市场中的动态定价和能量管理问题,其核心在于如何设计一种有效的机制,使得各VPP能够在竞争的市场环境中,最大化自身利润的同时,维持系统的稳定运行。这一问题的复杂性主要体现在以下几个方面:

  1. 主从博弈模型构建的复杂性:

     MVPP之间的关系可以视为一种主从博弈,其中一个VPP(领导者)率先制定价格策略,其他VPP(跟随者)根据领导者的策略调整自身的生产计划。如何准确捕捉这种层级关系,并将其转化为可求解的数学模型,是一个关键挑战。

  2. 动态定价策略的优化:

     电力市场价格波动频繁,VPP需要根据实时需求和竞争对手的策略,动态调整价格。传统的优化算法可能无法有效应对这种动态变化,需要引入更先进的优化方法。

  3. 能量管理的复杂性:

     VPP包含多种分布式能源,例如风能、太阳能、储能等,如何高效地整合这些资源,满足用户需求,并优化运营成本,是一个复杂的调度问题。

  4. 计算效率的挑战:

     考虑到实际应用的需求,所提出的算法需要具备较高的计算效率,能够在短时间内给出最优或近似最优的解决方案。

二、原研究的解决方案:元模型优化算法与主从博弈框架

原研究采用主从博弈框架来描述MVPP之间的竞争关系,并引入元模型优化算法来求解该博弈。具体而言,该研究通常采取以下步骤:

  1. 建立主从博弈模型:

     通常,领导者(通常是拥有更大市场份额或更强议价能力的VPP)制定价格策略,目标是最大化自身利润,同时考虑到跟随者的反应。跟随者则根据领导者的价格策略,优化自身的生产计划,以最大化自身利润。该博弈模型可以通过数学规划(如线性规划、非线性规划)或混合整数规划来表示。

  2. 定义目标函数和约束条件:

     每个VPP的目标函数是其利润,利润的计算通常涉及售电收入、购电成本、运行维护成本等因素。约束条件则包括发电机组的出力限制、线路容量限制、用户需求约束等。

  3. 采用元模型优化算法:

     由于主从博弈模型求解通常比较困难,特别是当VPP数量较多或者目标函数具有非凸性时,原研究通常会采用元模型优化算法来提高求解效率。常见的元模型优化算法包括:

    • 响应面方法(Response Surface Methodology,RSM):

       RSM通过建立目标函数和约束条件的近似模型(通常是多项式模型),来代替原始的复杂模型,从而简化优化过程。

    • Kriging模型:

       Kriging模型是一种基于高斯过程的插值方法,可以利用已知的采样点信息,预测未知点的函数值,并估计预测的不确定性。

    • 支持向量回归(Support Vector Regression,SVR):

       SVR是一种基于支持向量机的回归方法,可以通过找到最优的超平面,来拟合目标函数。

  4. 动态定价和能量管理策略制定:

     基于求解的主从博弈均衡解,每个VPP可以制定相应的动态定价策略和能量管理策略。例如,VPP可以根据市场价格和竞争对手的策略,实时调整电价;同时,VPP可以根据用户需求和分布式能源的出力情况,优化自身的生产计划。

⛳️ 运行结果

🔗 参考文献

[1]董雷,涂淑琴,李烨,等.基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理[J].电网技术, 2020(3):11.DOI:10.13335/j.1000-3673.pst.2019.2244.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值