✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
大规模单仓库多旅行商问题(LS-SDMTSP)作为一类经典的组合优化问题,广泛存在于物流配送、车辆调度等实际应用场景中。该问题具有计算复杂度高、求解难度大的特点,传统的精确算法难以在可接受的时间内找到最优解。本文针对LS-SDMTSP,提出一种基于鲸鱼迁徙算法(Whale Migration Algorithm, WMA)的求解方法。该方法借鉴鲸鱼群体迁徙过程中的协作行为和信息传递机制,设计了针对LS-SDMTSP的编码方式、适应度函数和搜索策略。通过实验验证,所提出的基于WMA的LS-SDMTSP求解算法能够在合理的时间内获得高质量的解,并与其他启发式算法进行比较,显示出一定的优势。
关键词: 大规模单仓库多旅行商问题,鲸鱼迁徙算法,启发式算法,组合优化,物流配送
1. 引言
随着电子商务的蓬勃发展和消费者对配送时效性要求的提高,物流配送系统面临着日益严峻的挑战。如何高效地规划车辆的行驶路线,降低配送成本,提高服务质量,成为物流企业关注的焦点。单仓库多旅行商问题(Single Depot Multiple Traveling Salesman Problem, SDMTSP)是车辆路径问题(Vehicle Routing Problem, VRP)的一种扩展形式,旨在优化多个旅行商从同一个仓库出发,访问一系列客户并最终返回仓库的行驶路线,目标通常是最小化总行驶距离或成本。当客户数量庞大时,SDMTSP就演变为大规模单仓库多旅行商问题(Large Scale SDMTSP, LS-SDMTSP)。
LS-SDMTSP由于其巨大的搜索空间和复杂的约束条件,被归类为NP-hard问题。传统的精确算法(例如分支定界法、割平面法等)虽然能够保证找到最优解,但在求解大规模问题时面临着计算复杂度过高、求解时间过长的瓶颈。因此,近年来,启发式算法(例如遗传算法、蚁群算法、模拟退火算法等)成为求解LS-SDMTSP的主要手段。这些算法虽然不能保证找到最优解,但能够在可接受的时间内找到高质量的近似解。
本文受到鲸鱼群体迁徙行为的启发,提出了一种基于鲸鱼迁徙算法(WMA)的LS-SDMTSP求解方法。WMA是一种新兴的群体智能优化算法,模拟了鲸鱼在海洋中迁徙时的社会协作行为和信息传递机制。本文针对LS-SDMTSP的特点,对WMA进行了改进和优化,并将其应用于LS-SDMTSP的求解过程中。
2. 相关研究
近年来,国内外学者对SDMTSP及其LS-SDMTSP进行了广泛的研究。
-
精确算法: Laporte和Noon (1987) 提出了基于分支定界法的精确算法求解SDMTSP,该算法能够有效地求解小规模问题。但随着问题规模的增大,其计算复杂度呈指数级增长,难以应用于LS-SDMTSP。
-
启发式算法: 启发式算法在求解LS-SDMTSP方面取得了显著的进展。常见的启发式算法包括:
- 遗传算法 (Genetic Algorithm, GA):
遗传算法通过模拟生物进化的过程,不断迭代优化种群中的个体,从而找到问题的近似最优解。例如,Renaud等人(1996) 提出了基于遗传算法的SDMTSP求解方法,并取得了较好的效果。
- 蚁群算法 (Ant Colony Optimization, ACO):
蚁群算法模拟了蚂蚁寻找食物的过程,通过信息素的传递,引导蚂蚁找到最短路径。例如,Bell和McMullen (2004) 将蚁群算法应用于SDMTSP的求解,并与其他算法进行了比较。
- 模拟退火算法 (Simulated Annealing, SA):
模拟退火算法模拟了金属退火的过程,通过一定的概率接受劣解,从而避免陷入局部最优。例如,Osman (1993) 将模拟退火算法应用于VRP的求解,并取得了较好的效果。
- 粒子群算法 (Particle Swarm Optimization, PSO):
粒子群算法模拟了鸟群寻找食物的过程,通过粒子之间的信息共享,引导粒子找到全局最优解。例如,Li等人(2009) 将粒子群算法应用于SDMTSP的求解,并提出了改进的粒子群算法。
- 遗传算法 (Genetic Algorithm, GA):
-
鲸鱼优化算法 (Whale Optimization Algorithm, WOA): WOA是一种新兴的元启发式算法,模拟了座头鲸的捕食行为。WOA已被成功应用于多个优化问题,但在LS-SDMTSP的应用方面仍有待进一步研究。
尽管启发式算法在求解LS-SDMTSP方面取得了一定的进展,但仍存在一些挑战。例如,如何设计有效的编码方式,如何平衡算法的探索能力和开发能力,以及如何避免算法陷入局部最优等。
3. 基于鲸鱼迁徙算法(WMA)的LS-SDMTSP求解方法
3.1 鲸鱼迁徙算法(WMA)概述
鲸鱼迁徙算法(WMA)是一种基于群体智能的优化算法,灵感来源于鲸鱼群体在海洋中的迁徙行为。在迁徙过程中,鲸鱼个体之间通过声音、行为等方式进行信息交流和协作,从而共同完成迁徙任务。WMA的主要特点包括:
- 社会协作:
鲸鱼个体之间通过信息传递和合作,共同寻找最佳的迁徙路径。
- 自适应性:
鲸鱼个体能够根据环境的变化和自身的状态,调整迁徙策略。
- 探索与开发平衡:
WMA通过控制探索和开发的过程,避免陷入局部最优。
3.2 基于WMA的LS-SDMTSP求解框架
本文提出的基于WMA的LS-SDMTSP求解框架主要包括以下几个步骤:
- 问题建模:
将LS-SDMTSP转化为数学模型,定义问题的目标函数和约束条件。
- 编码方式:
设计一种有效的编码方式,将问题的解表示为鲸鱼个体的染色体。
- 初始化种群:
随机生成初始鲸鱼种群。
- 适应度函数:
定义适应度函数,评估每个鲸鱼个体的优劣程度。
- 迁徙过程:
模拟鲸鱼的迁徙过程,包括信息交流、位置更新等步骤。
- 停止准则:
定义停止准则,当满足停止准则时,算法停止迭代,输出最优解。
3.3 LS-SDMTSP问题的数学模型
LS-SDMTSP可以描述为:给定一个仓库和一个客户集合,每个客户都有一定的需求量,有若干辆车辆从仓库出发,访问所有客户,并最终返回仓库。目标是最小化总行驶距离或成本。
数学模型如下:
3.4 编码方式
本文采用基于排列的编码方式,将LS-SDMTSP的解表示为一条染色体。染色体由两部分组成:客户序列和车辆分配序列。
- 客户序列:
表示客户的访问顺序。例如,序列 [1, 3, 2, 4, 5] 表示车辆按照 1 -> 3 -> 2 -> 4 -> 5 的顺序访问客户。
- 车辆分配序列:
表示每个客户由哪辆车负责访问。例如,序列 [1, 2, 1, 2, 1] 表示客户 1、3、5 由车辆 1 负责访问,客户 2、4 由车辆 2 负责访问。
例如,对于一个5个客户,2辆车的问题,一条可能的染色体为:
客户序列:[1, 3, 2, 4, 5]
车辆分配序列:[1, 2, 1, 2, 1]
这条染色体表示,车辆1负责访问客户1、3、5,路线为 0 -> 1 -> 3 -> 5 -> 0;车辆2负责访问客户2、4,路线为 0 -> 2 -> 4 -> 0。
3.5 适应度函数
适应度函数用于评估每个鲸鱼个体的优劣程度。本文采用总行驶距离作为适应度函数的评价标准。适应度值越小,表示鲸鱼个体越好。
在计算适应度值时,需要根据客户序列和车辆分配序列,确定每辆车的行驶路线,并计算每辆车的行驶距离。然后,将所有车辆的行驶距离加起来,得到总行驶距离。
3.6 迁徙过程
WMA的迁徙过程主要包括以下几个步骤:
-
信息交流: 鲸鱼个体之间通过声音等方式进行信息交流,学习其他个体的经验。本文采用邻域搜索的方式进行信息交流,每个鲸鱼个体选择其邻域内的最优个体进行学习。
-
位置更新: 鲸鱼个体根据自身的状态和其他个体的信息,更新自身的位置。本文采用以下公式更新鲸鱼个体的位置:
𝑥𝑖(𝑡+1)=𝑥𝑖(𝑡)+𝛼∗(𝑥𝑏𝑒𝑠𝑡(𝑡)−𝑥𝑖(𝑡))+𝛽∗(𝑥𝑟𝑎𝑛𝑑(𝑡)−𝑥𝑖(𝑡))
-
变异操作: 为了避免算法陷入局部最优,本文引入了变异操作。变异操作包括交换变异和插入变异。
- 交换变异:
随机选择染色体中的两个位置,交换这两个位置上的基因。
- 插入变异:
随机选择染色体中的一个位置,将该位置上的基因插入到染色体的另一个位置。
- 交换变异:
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇