【优化调度】基于改进的多目标粒子群算法求解含碳捕集微网多时间尺度经济调度优化问题附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球气候变化的日益严峻和能源结构的深刻转型,构建清洁、高效、可靠的能源系统已成为时代共识。微电网作为未来智能电网的重要组成部分,通过整合分布式电源、储能系统、可控负荷以及先进的能量管理系统,展现出巨大的发展潜力。然而,传统的微网经济调度通常侧重于发电成本的最小化,忽略了碳排放等环境因素的影响,难以适应日益严格的环保要求。同时,微网运行的复杂性和波动性,尤其是可再生能源和负荷的随机性, necessitates multi-time scale scheduling to balance real-time operation flexibility and day-ahead planning benefits. 碳捕集技术作为一种有效的碳减排手段,为微网的低碳运行提供了新的思路。本文聚焦于含碳捕集装置的微网多时间尺度经济调度优化问题,旨在构建一个综合考虑经济性和环境效益的多目标优化模型。针对模型的复杂性和多目标特性,提出一种基于改进多目标粒子群算法(Improved Multi-Objective Particle Swarm Optimization, IMOPSO)的求解方法。首先,详细阐述含碳捕集微网的系统构成及运行特性,建立包含日前调度和实时调度两个时间尺度的优化模型,目标函数涵盖运行成本、环境成本和碳捕集成本。其次,深入分析传统多目标粒子群算法在处理此类复杂问题时可能存在的收敛性和多样性不足等挑战,并提出针对性的改进策略,包括引入非支配排序与拥挤距离机制增强 Pareto 前沿的发现能力,设计自适应惯性权重和学习因子提高算法的搜索效率和全局收敛性,以及采用基于精英档案的外部存档策略维护解集的多样性。最后,通过典型微网系统案例仿真,验证所提模型的有效性和所提算法的优越性。仿真结果表明,本文构建的多目标优化模型能够有效平衡经济效益和环境效益,IMOPSO 算法在求解此类问题时表现出更强的收敛速度、更广泛的解集分布和更好的 Pareto 前沿质量,为含碳捕集微网的多时间尺度经济调度提供了可行的解决方案。

关键词: 含碳捕集微网; 多时间尺度调度; 经济调度; 环境效益; 多目标优化; 粒子群算法; 非支配排序; 拥挤距离; 改进算法

引言

当前,能源体系正经历着深刻的变革,以可再生能源为主体的新型电力系统加速构建。微电网作为实现分布式能源高效利用和灵活调度的重要载体,在提高能源利用效率、保障供电可靠性和促进能源绿色转型方面发挥着关键作用。传统的微网经济调度主要关注发电成本、购售电成本等经济指标的优化,通过合理分配各分布式电源的出力、调整储能系统的充放电状态以及控制可控负荷的运行,实现系统运行成本的最小化 [1, 2]。然而,随着全球对气候变化问题的日益关注和碳排放法规的日益严格,将碳排放纳入微网调度优化框架已成为必然趋势 [3, 4]。

含碳捕集技术作为一种有效的碳减排手段,能够从工业过程或发电厂的排放物中捕获二氧化碳,并进行后续的运输和封存或利用,显著降低温室气体排放 [5, 6]。将碳捕集装置引入微网系统,能够进一步提升微网的低碳运行水平,为实现碳中和目标提供技术支撑。然而,碳捕集装置的运行需要消耗能量,其运行状态会影响微网的整体能耗和成本。因此,在含碳捕集微网的经济调度中,需要综合考虑发电成本、购售电成本、储能运行成本、碳捕集运行成本以及碳排放成本等多方面的因素。

此外,微网系统的运行是一个动态过程,分布式电源(尤其是光伏、风电)和负荷的波动性和随机性为微网的实时控制和调度带来了挑战 [7, 8]。单一时间尺度的调度策略难以有效应对这些不确定性,容易导致能源供需失衡和运行效率下降。因此,采用多时间尺度调度策略,将日前规划与实时调整相结合,成为提升微网运行灵活性和鲁棒性的有效途径 [9, 10]。日前调度基于对未来24小时负荷、可再生能源出力等的预测,制定总体调度计划,为系统运行提供指导。实时调度则根据实际的运行状态和短时预测信息,对日前计划进行滚动修正,以应对预测偏差和突发事件。

含碳捕集微网的多时间尺度经济调度优化问题是一个复杂的多目标优化问题。它不仅需要优化各设备的出力和运行状态以最小化经济成本,还需要最小化系统的碳排放量,同时考虑碳捕集装置的运行特性和成本。传统的单目标优化方法难以有效解决具有冲突性目标的多目标问题,容易陷入局部最优,且无法获得一组能够权衡不同目标的 Pareto 最优解集。

多目标优化算法是解决此类问题的有力工具。近年来,基于群体智能的优化算法,如粒子群算法(Particle Swarm Optimization, PSO)、遗传算法(Genetic Algorithm, GA)等,在求解电力系统调度问题中展现出良好的性能 [11, 12]。特别是多目标粒子群算法(Multi-Objective Particle Swarm Optimization, MOPSO),由于其概念简单、易于实现、搜索效率高等优点,在解决多目标优化问题中得到了广泛应用 [13, 14]。然而,经典的 MOPSO 算法在处理高维、多约束、非线性问题时,可能面临收敛速度慢、解集多样性不足、易于陷入局部最优等问题 [15, 16]。因此,需要对 MOPSO 算法进行改进,以提高其在求解含碳捕集微网多时间尺度经济调度问题时的性能。

基于以上分析,本文旨在:

  1. 建立包含日前调度和实时调度两个时间尺度的含碳捕集微网经济调度优化模型,并将其转化为多目标优化问题,综合考虑经济成本、环境成本和碳捕集成本。

  2. 深入分析传统多目标粒子群算法的不足之处,并提出一种改进的多目标粒子群算法(IMOPSO),通过引入先进的非支配排序和拥挤距离机制、自适应参数调整策略以及精英档案维护机制,提升算法的收敛性和多样性。

  3. 利用典型微网系统进行仿真研究,验证所建模型的有效性和所提 IMOPSO 算法在求解含碳捕集微网多时间尺度经济调度问题上的优越性。

本文结构安排如下:第二节详细介绍含碳捕集微网的系统 구성和运行特性,并建立多时间尺度经济调度优化模型。第三节阐述基于改进多目标粒子群算法的求解方法,包括算法的基本原理、改进策略以及实现步骤。第四节进行仿真算例分析,展示模型的有效性和算法的性能。第五节对全文进行总结,并展望未来研究方向。

二、含碳捕集微网系统及多时间尺度经济调度模型

2.1 含碳捕集微网系统构成

含碳捕集微网系统通常由以下主要组成部分构成(如图1所示):

  • 分布式电源 (Distributed Generators, DGs):

     包括可再生能源发电设备,如光伏(PV)、风力涡轮机(WT),以及传统化石燃料发电设备,如微型燃气轮机(MT)、柴油发电机(DG)等。这些电源共同为微网提供电力。

  • 储能系统 (Energy Storage System, ESS):

     通常采用电池储能系统,用于存储多余的电能并在需要时释放,以平滑可再生能源的波动、提高系统供电可靠性和参与峰谷套利。

  • 可控负荷 (Controllable Loads, CL):

     指可以根据调度指令调整其运行状态或功率消耗的负荷,例如蓄热空调、电动汽车充电站等。可控负荷的调度可以帮助平衡供需,削峰填谷。

  • 碳捕集装置 (Carbon Capture Unit, CCU):

     用于捕集化石燃料发电设备(如 MT, DG)排放的二氧化碳。碳捕集过程需要消耗能量(通常是电能或热能),并产生运行成本。

  • 电网接口 (Point of Common Coupling, PCC):

     微网通过 PCC 与外部大电网相连,可以实现电力的买卖。

  • 能量管理系统 (Energy Management System, EMS):

     负责整个微网系统的监控、预测、调度和控制,协调各设备的运行,以实现预设的优化目标。

本文采用日前调度和实时调度相结合的多时间尺度调度框架。

  • 日前调度 (Day-Ahead Scheduling):

     以24小时为周期,调度间隔通常为1小时。基于对未来24小时负荷、可再生能源出力、电价等的预测信息,制定各设备的出力计划、储能系统的充放电计划、可控负荷的调整计划以及与大电网的购售电计划。日前调度的目标是制定一个全局最优或接近最优的长期计划。

  • 实时调度 (Real-Time Scheduling):

     以较短的时间间隔(例如5分钟、15分钟)进行,通常采用滚动优化的方式。根据实时的运行状态、实际负荷和可再生能源出力以及短时预测信息,对日前计划进行微调,以应对预测偏差和突发事件,保证系统的实时平衡和可靠运行。

2.3 优化模型

本节建立含碳捕集微网的多时间尺度经济调度优化模型。由于是多目标问题,我们将模型的优化目标定义为多个相互冲突的子目标。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值