作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
热电联产(Combined Heat and Power, CHP)系统作为一种高效的能源利用方式,在满足电力和热力需求的同时,显著提高了能源转化效率、减少了环境污染。然而,随着负荷波动、设备运行特性以及燃料成本变化等因素的影响,如何实现CHP系统的经济运行,即热电联产经济调度,成为一个复杂且极具挑战性的优化问题。本文深入探讨了基于粒子群优化(Particle Swarm Optimization, PSO)算法和二进制遗传算法(Binary Genetic Algorithm, BGA)协同解决CHP系统经济调度的研究。文章详细阐述了热电联产经济调度的数学模型,分析了PSO和BGA在解决该问题上的优势与不足,并提出了将两种算法结合的混合优化策略。通过理论分析和潜在的仿真结果讨论,本文旨在证明混合算法在提高求解精度、加速收敛速度以及处理复杂约束方面的有效性,为实现CHP系统的最优经济运行提供理论依据和技术支持。
关键词:热电联产;经济调度;粒子群优化;二进制遗传算法;混合算法;优化问题
引言
随着全球能源需求的不断增长和环境保护意识的日益增强,提高能源利用效率和降低碳排放已成为各国能源发展战略的核心。热电联产系统通过同时生产电能和热能,显著提高了燃料的综合利用率,相比于传统的发电厂和锅炉房分开供能的方式,能够实现高达80%以上的能源效率,是实现可持续能源发展的重要途径之一。
热电联产系统的经济调度旨在确定在满足电力负荷和热力负荷需求的前提下,各个发电单元(如热电机组、纯凝机组、锅炉等)的最优出力组合,以最小化总运行成本。这个总运行成本通常包括燃料成本、启停机成本、维护成本等。然而,CHP系统的经济调度是一个典型的非线性、多约束、多变量优化问题,其复杂性主要体现在以下几个方面:
- 非线性特性:
热电联产机组的输入-输出特性通常是非线性的,例如燃气轮机的效率随着负荷变化而变化,蒸汽轮机的热耗率与电出力和热出力都有复杂的非线性关系。
- 耦合特性:
热电机组的电出力和热出力之间存在固有的耦合关系,通常由其运行区域约束(如电出力-热出力可行区域)来描述。
- 多种约束:
除了电热负荷平衡约束外,系统还需要满足发电机组的出力上下限约束、爬坡率约束、最小运行/停运时间约束以及燃料供应约束等。
- 动态特性:
系统负荷是随时间变化的,经济调度需要考虑在一定时间段内的优化,这增加了问题的维度和复杂性。
- 离散变量:
机组的启停状态是离散变量,这使得问题成为一个混合整数非线性规划问题。
传统的优化方法,如线性规划、非线性规划和混合整数规划等,在处理小规模、线性化或易于凸化的CHP经济调度问题时可能有效。然而,对于大规模、非线性、包含离散变量和复杂约束的实际CHP系统,这些传统方法往往面临计算量巨大、容易陷入局部最优解、难以处理非凸问题等挑战。
近年来,随着计算技术的飞速发展,智能优化算法在解决复杂优化问题方面展现出强大的潜力。粒子群优化(PSO)算法和遗传算法(GA)作为两种经典的群智能算法,因其良好的全局搜索能力和鲁棒性,已被广泛应用于电力系统经济运行、调度等领域。基于此,本文将聚焦于基于粒子群算法和二进制遗传算法协同解决热电联产经济调度的研究,旨在利用两种算法的优势互补,提高求解质量和效率。
第一部分:热电联产经济调度数学模型
热电联产经济调度的目标是最小化系统在一定时间段内的总运行成本,同时满足各种运行约束。考虑一个包含NN个热电机组、MM个纯凝机组、KK个锅炉以及其他可能的能源设备的CHP系统,在调度周期TT(通常为24小时,分成若干时间间隔)内,经济调度模型可以表述如下:
目标函数: 最小化总运行成本
minCtotal=∑t=1T[∑i=1NCCHP,i(Pe,i,t,Hh,i,t)+∑j=1MCCond,j(Pe,j,t)+∑k=1KCBoiler,k(Hh,k,t)+∑l=1N+M+KCSU,l,t+∑l=1N+M+KCSD,l,t]
约束条件:
第二部分:粒子群优化(PSO)算法在CHP经济调度中的应用
粒子群优化(PSO)算法是一种基于群体智能的随机搜索算法,模拟鸟群或鱼群的觅食行为。在PSO算法中,每个“粒子”代表问题的一个潜在解,粒子在解空间中以一定的速度飞行,并根据自身历史最优位置(pbest)和群体历史最优位置(gbest)来更新自己的速度和位置,最终收敛到最优解。
将PSO算法应用于CHP经济调度问题,可以将每个粒子的位置向量表示为系统中所有可调机组在所有时间间隔内的出力组合。对于包含NN个热电机组、MM个纯凝机组和KK个锅炉的系统,在TT个时间间隔内,一个粒子的位置向量可以表示为:
这使得粒子的维度非常高。考虑到启停机问题通常用二进制变量表示,PSO的标准形式更适合处理连续优化问题。为了适应包含离散变量的问题,可以对PSO进行改进,例如采用二进制PSO,或者将启停机决策与连续出力优化分开处理。
PSO解决连续出力部分:
对于仅考虑连续出力约束(如出力上下限、爬坡率和电热耦合约束)的情况,可以将粒子的位置定义为连续变量,并设计适应度函数为总运行成本。在每次迭代中,根据以下公式更新粒子的速度和位置:
vik+1=wvik+c1r1(pbesti−xik)+c2r2(gbest−xik)
PSO的优势:
- 全局搜索能力:
通过粒子之间的信息交流,PSO能够在解空间中进行有效的全局搜索,避免陷入局部最优。
- 实现简单:
PSO算法的原理相对简单,容易实现。
- 参数较少:
PSO的参数相对较少,调参较为方便。
PSO的不足:
- 收敛后期速度慢:
在接近最优解时,粒子的多样性可能降低,导致收敛速度变慢。
- 处理离散变量困难:
标准PSO不适合直接处理包含离散变量的问题。
- 约束处理复杂:
处理复杂的非线性约束和等式约束需要精心设计的惩罚函数或修正策略,可能影响算法性能。
第三部分:二进制遗传算法(BGA)在CHP经济调度中的应用
遗传算法(GA)是一种模拟自然界生物进化过程的优化算法,通过选择、交叉和变异等操作,在种群中不断产生更好的个体,最终找到最优解。遗传算法通常更适合处理离散优化问题,尤其是二进制编码的遗传算法(BGA)。
BGA解决启停机部分:
BGA解决启停机问题通常包括以下步骤:
-
编码: 将每个机组在每个时间间隔的启停状态编码为0或1的二进制串。例如,对于3个机组在2个时间间隔的调度,一个基因串可以是110101,表示机组1在时间1和2运行,机组2在时间1停运、时间2运行,机组3在时间1运行、时间2停运。
-
初始化种群: 随机生成一定数量的二进制基因串,构成初始种群。需要确保初始种群满足一些基本的约束,例如机组数量不能超过系统总数。
-
适应度评估: 对于每个启停机计划(基因串),需要计算其对应的运行成本。由于启停机计划决定了哪些机组在何时运行,因此需要在此基础上进行连续出力优化,以确定各机组的具体出力,并计算总运行成本。这一步通常需要调用一个连续优化子问题求解器,或者采用启发式方法分配负荷。适应度函数通常设置为总运行成本的倒数或负数(最小化问题)。在评估适应度时,需要考虑最小运行/停运时间约束以及启停机成本。违反这些约束的个体可以给予惩罚,降低其适应度。
-
选择: 根据个体的适应度,选择一部分个体进入下一代。常用的选择方法包括轮盘赌选择、锦标赛选择等。高适应度的个体有更大的概率被选中。
-
交叉: 选中个体之间进行基因交换,产生新的个体(后代)。常用的交叉方法包括单点交叉、多点交叉、均匀交叉等。例如,单点交叉在基因串中随机选择一个交叉点,然后交换两个父代个体交叉点之后的基因段。
-
变异: 以一定的概率对新个体的基因进行随机改变(0变1,1变0)。变异有助于增加种群的多样性,防止算法陷入局部最优。
-
迭代: 重复选择、交叉、变异过程,直到达到预设的迭代次数或收敛条件。
BGA的优势:
- 适合处理离散问题:
BGA天生适合处理二进制编码的离散优化问题,能够有效地处理机组的启停机决策。
- 鲁棒性强:
GA通过种群搜索,对初始解不敏感,具有较强的鲁棒性。
- 并行计算潜力:
GA的种群操作具有并行性,易于进行并行计算加速。
BGA的不足:
- 计算量大:
每次评估适应度都需要进行连续出力优化,计算量可能很大。
- 收敛速度相对较慢:
GA的收敛速度通常比PSO慢,尤其是在问题规模较大时。
- 参数敏感:
GA的性能对交叉率、变异率等参数比较敏感,需要仔细调整。
- 连续变量处理困难:
标准BGA不适合直接处理连续出力变量,需要额外的处理或与其他算法结合。
第四部分:基于粒子群和二进制遗传算法的混合优化策略
考虑到CHP经济调度问题的复杂性,单一的PSO或BGA算法都存在一定的局限性。PSO善于处理连续变量的全局搜索,但在处理离散启停机决策方面存在不足;BGA善于处理离散决策,但在连续出力优化方面需要额外的手段。因此,将两种算法的优势结合起来,构建基于粒子群和二进制遗传算法的混合优化策略,成为解决CHP经济调度问题的有效途径。
混合算法的基本思想是利用BGA处理机组的启停机决策(离散部分),利用PSO处理在给定启停机计划下的连续出力优化(连续部分)。具体实现方式可以有多种,以下提出一种可能的混合优化框架:
混合优化框架:
-
外部循环(BGA): 使用二进制遗传算法来搜索最优的机组启停机计划。
- 编码:
每个个体编码为一个包含所有机组在所有时间间隔内的二进制启停状态序列。
- 适应度评估:
对于BGA生成的每一个启停机计划,作为输入传递给内部循环的PSO算法。
- 选择、交叉、变异:
根据PSO计算得到的最小运行成本作为适应度,利用BGA的选择、交叉、变异操作生成下一代启停机计划种群。
- 编码:
-
内部循环(PSO): 对于BGA给定的一个启停机计划,使用粒子群优化算法来优化连续的机组出力(电出力和热出力)。
- 粒子编码:
粒子的位置编码为在当前启停机计划下,所有运行机组在所有时间间隔内的连续出力(电出力和热出力)。
- 适应度评估:
对于PSO生成的每一个出力组合,计算其在当前启停机计划下的总运行成本(包括燃料成本、启停机成本)。需要考虑出力上下限、爬坡率和电热耦合等连续约束。约束违反可以采用惩罚函数处理。
- 粒子更新:
根据PSO的速度和位置更新公式,搜索最优的出力组合,最小化运行成本。
- 输出:
PSO算法收敛后,输出在该启停机计划下的最小运行成本。
- 粒子编码:
-
迭代: 重复外部循环的BGA过程,直到达到预设的迭代次数或收敛条件。最终输出BGA找到的最优启停机计划以及对应的PSO计算得到的最小总运行成本和最优出力组合。
混合算法的优势:
- 优势互补:
BGA有效地处理了启停机决策的离散性,PSO有效地处理了连续出力优化,弥补了单一算法的不足。
- 提高求解精度:
通过两层优化,能够更全面地搜索解空间,提高找到全局最优解的概率。
- 处理复杂约束:
将启停机约束主要交给BGA处理,将连续出力约束主要交给PSO处理,降低了单一算法处理所有约束的难度。
实现细节和注意事项:
- PSO的适应度函数设计:
在PSO内部循环中,适应度函数需要包含连续出力约束的惩罚项,以引导粒子向可行区域移动。
- 启停机计划的合法性检查:
在BGA中生成新的启停机计划后,需要检查是否满足最小运行/停运时间等约束。不合法的计划可以给予高惩罚或者通过修复操作使其合法。
- 计算效率:
这种混合算法的计算量主要取决于PSO内部循环的收敛速度以及BGA外部循环的迭代次数和种群大小。需要权衡计算效率和求解精度。可以考虑一些加速技巧,例如自适应参数调整、精英保留策略等。
- 参数调整:
混合算法涉及PSO和BGA两套参数,需要进行细致的参数调整以获得最佳性能。
第五部分:仿真与结果分析(假设性讨论)
为了验证基于PSO和BGA混合算法在CHP经济调度中的有效性,可以构建一个典型的CHP系统模型,包含不同类型的热电机组、纯凝机组和锅炉,并设置不同场景的电力负荷和热力负荷需求。通过与单一的PSO或BGA算法以及其他优化算法(如混合整数规划软件求解器在简化模型下的结果)进行对比,评估混合算法的性能。
可能的仿真设置:
- 系统规模:
例如,包含3个热电机组,2个纯凝机组,1个锅炉。
- 机组参数:
设置各机组的成本系数、出力上下限、爬坡率、最小运行/停运时间等参数。
- 负荷数据:
采用典型的24小时电力和热力负荷曲线。
- 算法参数:
设置PSO的种群大小、迭代次数、惯性权重、学习因子等;设置BGA的种群大小、迭代次数、交叉率、变异率等。
- 对比算法:
单一的PSO算法(改进以处理离散变量),单一的BGA算法(改进以处理连续变量),以及可能的混合整数规划求解器(在简化模型下的结果)。
可能的仿真结果分析:
- 总运行成本:
对比不同算法得到的最小总运行成本。理论上,混合算法应该能够找到更低的运行成本,因为它能够更全面地考虑启停机和连续出力的耦合优化。
- 收敛特性:
比较不同算法的收敛速度和收敛过程。混合算法可能在早期迭代中表现出更快的收敛速度,或者在后期迭代中能够跳出局部最优。
- 约束满足情况:
检查不同算法得到的调度方案是否满足所有约束条件,包括启停机约束和连续出力约束。混合算法在处理这些约束方面可能更有效。
- 计算时间:
比较不同算法的计算时间。混合算法的计算时间可能比单一算法长,但其求解质量可能更高。
- 鲁棒性分析:
改变负荷曲线、机组参数等,分析算法的鲁棒性。
通过仿真结果的详细分析,可以定量地评估基于PSO和BGA混合算法在解决CHP经济调度问题上的优势,证明其在提高经济效益、确保系统安全稳定运行方面的潜力。
结论
热电联产经济调度是提高能源利用效率、降低运行成本的关键问题。由于其非线性、多约束、混合整数等复杂特性,传统的优化方法难以有效地解决大规模实际问题。本文深入探讨了基于粒子群优化和二进制遗传算法的混合优化策略在CHP经济调度中的应用。
通过对热电联产经济调度的数学模型进行详细阐述,并分析了PSO和BGA两种算法在解决该问题上的优缺点,本文提出了将BGA用于处理启停机离散决策、将PSO用于处理连续出力优化的混合优化框架。理论分析表明,这种混合策略能够充分发挥两种算法的优势,提高求解的全局性和精度,并有效处理复杂的约束条件。
⛳️ 运行结果
🔗 参考文献
[1] 何明杰.考虑电动汽车充放电的电网经济调度研究[D].华东交通大学,2013.DOI:10.7666/d.D373918.
[2] 李世文,张红梅,张向利,等.基于二进制粒子群与遗传算法的数据分配研究[J].电子技术应用, 2016, 42(7):5.DOI:10.16157/j.issn.0258-7998.2016.07.031.
[3] 季一木,王汝传.基于粒子群的网格任务调度算法研究[J].通信学报, 2007, 28(10):7.DOI:10.3321/j.issn:1000-436x.2007.10.010.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇