✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本研究针对电动汽车与电网互动过程中资源优化配置问题,深入探讨基于 V2G(Vehicle-to-Grid)技术的电动汽车实时调度策略。通过分析 V2G 技术在电动汽车与电网协同运行中的应用价值,构建包含目标函数、约束条件的实时调度模型,综合考虑电网负荷平衡、电动汽车用户需求以及电池寿命影响等因素。采用智能优化算法对模型进行求解,并通过仿真实验验证调度策略的有效性。结果表明,所提出的实时调度策略能够有效实现电动汽车与电网的双向互动,在削峰填谷、提升电网稳定性的同时,满足用户充电需求,延长电池使用寿命,为推动电动汽车与电网的协同发展提供了理论依据与实践指导。
一、引言
1.1 研究背景
随着全球对环境保护和可持续发展的重视,电动汽车作为清洁能源交通工具,其保有量呈现快速增长趋势。然而,大量电动汽车的无序充电可能导致电网负荷峰谷差进一步增大,给电网的安全稳定运行带来挑战 。V2G 技术的出现为解决这一问题提供了新途径,它允许电动汽车在闲置时将电能反向输送至电网,实现车辆与电网之间的双向能量流动 。通过合理的调度策略,V2G 技术不仅能够优化电网资源配置,缓解电网供电压力,还能为电动汽车用户带来经济效益,实现电网与用户的双赢。因此,研究基于 V2G 技术的电动汽车实时调度策略具有重要的现实意义。
1.2 研究目的
本研究旨在设计一种基于 V2G 技术的电动汽车实时调度策略,通过对电动汽车充放电行为的优化控制,实现电网负荷的削峰填谷,提高电网运行的稳定性和经济性;同时,充分考虑电动汽车用户的充电需求和电池寿命,在保障用户使用体验的前提下,延长电池使用寿命,促进电动汽车与电网的协同发展。
1.3 国内外研究现状
国外在 V2G 技术及电动汽车调度策略研究方面起步较早,取得了一系列成果。部分研究通过建立数学模型,结合智能优化算法,对电动汽车的充放电进行优化调度,以实现电网负荷平衡 。例如,采用粒子群优化算法(PSO)、遗传算法(GA)等,在考虑电网约束和用户需求的基础上,优化电动汽车的充放电时间和功率 。此外,一些研究还关注 V2G 技术对电网稳定性和电能质量的影响,并提出相应的控制策略 。国内研究近年来也发展迅速,许多学者从不同角度对电动汽车与电网的互动进行研究。有的通过分析用户出行规律和充电需求,制定电动汽车有序充电策略 ;有的研究 V2G 技术在微电网中的应用,探索其对微电网运行的优化作用 。但目前的研究在实时性和动态适应性方面仍有待提高,对电池寿命影响的综合考虑也不够全面。
二、V2G 技术概述
2.1 V2G 技术原理
V2G 技术基于双向充放电装置实现电动汽车与电网之间的能量双向流动。当电动汽车处于闲置状态且电网需要时,车辆电池可通过双向变流器将电能回馈至电网;当车辆需要充电时,电网则向车辆供电。其实现过程涉及电力电子技术、通信技术和控制技术等多领域知识。在通信方面,通过车网通信协议,实现电动汽车与电网之间的信息交互,包括车辆电池状态(荷电状态、健康状态等)、用户充电需求、电网负荷信息等 。基于这些信息,电网侧或车辆侧的控制单元能够对充放电过程进行精确控制,确保能量流动的安全、高效。
2.2 V2G 技术的优势与挑战
V2G 技术的优势主要体现在以下几个方面:从电网角度看,它能够有效调节电网负荷,实现削峰填谷,减少对传统调峰电源的依赖,提高电网运行效率和稳定性 ;同时,可降低电网建设和升级成本,促进可再生能源的消纳。从用户角度看,电动汽车车主可以通过向电网售电获得经济收益,降低使用成本 。然而,V2G 技术也面临诸多挑战。一方面,频繁的充放电可能加速电池老化,缩短电池使用寿命,增加用户的使用成本和维护负担 ;另一方面,大规模 V2G 应用对电网的安全性和可靠性提出了更高要求,如可能引发电网电压波动、谐波污染等问题 。此外,还存在通信安全、用户隐私保护以及商业模式和政策法规不完善等问题。
⛳️ 运行结果
🔗 参考文献
[1] 陈凯炎,牛玉刚.基于V2G技术的电动汽车实时调度策略[J].电力系统保护与控制, 2019, 047(014):1-9.
[2] 陈凯炎,牛玉刚.基于V2G技术的电动汽车实时调度策略[J].电力系统保护与控制, 2019, 47(14):9.DOI:10.19783/j.cnki.pspc.181011.
[3] 李帅.基于V2G技术的电动汽车集群优化调度策略[D].沈阳工业大学,2023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇