作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代雷达技术中,相控阵雷达以其独特的电子扫描能力、多功能性以及高增益优势,已成为主流发展趋势。而波束形成技术作为相控阵雷达的核心,其性能优劣直接决定了雷达系统的探测、跟踪和识别能力。在众多波束形成方法中,“延时求和波束形成”(Time-Delay Beamforming)因其宽带特性和对任意阵列几何结构的普适性,在复杂电磁环境和多任务场景下展现出无可比拟的优越性。本文将深入探讨任意阵列几何结构的延时求和波束形成原理、实现挑战与优化策略,并展望其在未来雷达系统中的应用前景。
一、延时求和波束形成的基本原理
延时求和波束形成的核心思想在于通过精确控制每个阵元接收信号的相对延时,使得来自特定方向的信号在求和点处实现相干叠加,从而形成指向该方向的波束,同时抑制来自其他方向的干扰。与传统的数字移相波束形成(Digital Phase Shifting Beamforming)不同,延时求和波束形成直接操作信号的瞬时值,而非仅仅其相位。这种基于时间域的对齐方式,保证了波束形成器在整个信号带宽内都能实现最佳的波束合成效果,尤其适用于处理宽带信号,例如脉冲压缩雷达波形。
理想情况下,对于来自期望方向的信号,所有补偿延时将抵消信号本身的传播延时,使得所有信号分量同相叠加。而对于来自其他方向的信号,由于补偿延时无法完全抵消其传播延时,导致信号分量在求和时出现相位不匹配,从而实现抑制效果。
二、任意阵列几何结构的挑战与优势
任意阵列几何结构,顾名思义,指阵列的阵元排布不限于直线、平面、圆形等规则形状,而是可以任意非规则地分布在三维空间中。这种结构虽然带来了更大的设计自由度,但在延时求和波束形成中也面临着独特的挑战:
-
精确阵元位置测量与标定: 任意几何结构意味着每个阵元的精确三维坐标是波束形成性能的关键。任何阵元位置的微小误差都会导致补偿延时的计算偏差,进而影响波束指向精度和旁瓣抑制能力。因此,高精度的阵元位置测量和校准技术至关重要。
-
复杂延时计算: 对于规则阵列,如均匀直线阵或均匀平面阵,阵元位置的规律性使得延时计算可以采用简化的公式。然而,对于任意几何结构,每个阵元的延时都需要独立计算,这增加了实时处理的计算负担。特别是在宽带信号和高速电子扫描场景下,对实时计算能力提出了更高要求。
-
旁瓣抑制与方向图优化: 任意几何结构的波束形成方向图可能比规则阵列更加复杂,旁瓣水平和零点分布难以直观预测和优化。设计合适的加权函数(权重)来进一步抑制旁瓣,同时保持主瓣宽度和增益,是需要深入研究的课题。
尽管存在上述挑战,任意阵列几何结构的延时求和波束形成也展现出显著的优势:
-
自由度更高,适应性更强: 摆脱了传统规则阵列的几何限制,可以根据平台空间、天线罩形状、隐身要求等实际工程需求,灵活地布置阵元。例如,在舰船、飞行器或车辆等有限空间平台上,非规则阵列能够最大化利用可用表面,实现更优的天线覆盖和性能。
-
抗毁性与冗余度: 阵元位置的非均匀性使得单个或少数阵元失效对整体阵列性能的影响可能小于规则阵列。通过适当的阵元分布和冗余设计,可以提高阵列的抗毁能力和鲁棒性。
-
多功能集成潜力: 任意几何结构为雷达、通信、电子战等多种功能的天线集成提供了更大的可能性。通过将不同用途的阵元或子阵以非规则方式集成在一个平台上,可以实现更高的系统集成度和资源利用率。
三、实现挑战与优化策略
实现任意阵列几何结构的延时求和波束形成,需要克服诸多技术挑战,并采取相应的优化策略:
-
高精度阵元位置测量与校准:
- 测量技术:
采用激光跟踪仪、三维扫描仪、GPS RTK(实时动态定位)等高精度测量设备对阵元进行精确测量。对于大型阵列或复杂环境,可以考虑结合惯性导航系统(INS)进行辅助定位。
- 校准算法:
由于机械安装误差、温度变化、结构形变等因素,阵元位置可能随时间发生漂移。因此,需要开发在线或离线的阵元位置校准算法。这包括利用已知参考源(如卫星、地面合作目标)进行自校准,或通过信号处理方法(如互相关、自适应算法)估计阵元间的相对相位和时延误差。
- 测量技术:
-
高效的实时延时计算与实现:
- 硬件加速:
采用FPGA(现场可编程门阵列)或ASIC(专用集成电路)等高性能数字信号处理器件,实现并行处理和流水线操作,以满足实时延时计算的吞真需求。
- 查表法与插值:
预先计算并存储常用方向或典型场景下的延时值,通过查表和插值的方式快速获取,减少实时计算量。
- 数字延时线:
在数字域实现延时,通常采用高采样率的A/D转换器和数字滤波器。为了实现任意小数延时,需要利用数字插值滤波器(如分数延时滤波器)或采样率转换技术。
- 分布式处理:
对于超大阵列,可以采用分布式架构,将延时计算和波束形成任务分配到多个处理单元,提高并行度。
- 硬件加速:
-
波束方向图优化与自适应处理:
- 加权技术:
除了延时对齐,还可以对每个阵元信号施加幅度或复数加权,以优化波束方向图。常用的加权窗函数包括Hanning窗、Hamming窗、Chebyshev窗等,用于抑制旁瓣。
- 自适应波束形成:
在复杂电磁环境下,通过自适应算法(如LCMV、MVDR、Capon等)实时调整阵元加权,以最大化信噪比(SNR)或信干噪比(SINR),有效抑制干扰和杂波。自适应算法能够根据实际接收信号的统计特性动态调整波束,从而获得最佳性能。
- 多波束形成:
延时求和波束形成能够同时形成多个独立指向的波束,通过并行处理实现多目标跟踪或多功能任务。这需要更复杂的延时计算和信号路由机制。
- 加权技术:
四、应用前景与展望
任意阵列几何结构的延时求和波束形成技术,将在未来雷达系统中扮演越来越重要的角色,其应用前景广阔:
-
新一代多功能集成平台雷达: 随着飞行器、舰船、车辆等平台对隐身、轻量化、多功能集成的需求日益增长,传统规则阵列的安装限制愈发明显。任意几何结构的延时求和波束形成能够实现雷达阵列与平台结构的紧密融合,实现真正意义上的“构件化雷达”,提升系统隐身性能和空间利用率。
-
宽带雷达与多模态雷达: 宽带信号是实现高距离分辨率和复杂目标识别的关键。延时求和波束形成在宽带信号处理上的固有优势,使其成为未来宽带雷达和融合多模态(如雷达、通信、电子侦察)传感器的理想选择。
-
分布式孔径雷达与稀疏阵列: 在分布式孔径雷达系统中,阵元可能分布在相距较远的不同平台上。任意几何结构的延时求和波束形成能够有效地将这些分散的阵元信号进行相干合成,形成虚拟的超大孔径,从而获得更高的角分辨率和探测距离。同时,通过优化阵元分布,可以设计稀疏阵列,在保持性能的同时大幅减少阵元数量,降低系统成本和复杂度。
-
对抗复杂电磁环境: 面对日益复杂的电磁干扰和有源欺骗,自适应延时求和波束形成能够有效抑制来自任意方向的干扰,提高雷达在强干扰环境下的生存能力和目标探测能力。
-
空间碎片监测与天基雷达: 空间碎片监测对雷达的探测距离和角分辨率要求极高。任意几何结构的天基雷达阵列可以更好地适应卫星平台的设计限制,并通过延时求和波束形成实现高精度、大范围的空间态势感知。
结论
任意阵列几何结构的延时求和波束形成是相控阵雷达领域的一项前瞻性技术。它以其宽带特性、对任意阵列的普适性和对复杂电磁环境的适应性,为新一代雷达系统的设计和性能提升提供了强大的技术支撑。尽管面临着精确阵元位置标定、高效实时计算等挑战,但随着数字信号处理技术、高精度测量技术和自适应算法的不断发展,这些挑战正逐步得到解决。未来,该技术必将在多功能集成平台雷达、宽带雷达、分布式孔径雷达以及复杂电磁环境对抗等领域发挥关键作用,引领雷达技术迈向更高水平。
⛳️ 运行结果
🔗 参考文献
[1] 潘少飞.圆柱形相控阵雷达空域信号处理系统的设计与FPGA实现[D].西安电子科技大学,2022.
[2] 马叶子.阵列发射波束综合的解析方法及其应用[J].电子科技大学, 2020.
[3] 范占春,李会勇,何子述.基于分数时延的宽带数字阵列波束形成[J].雷达科学与技术, 2008, 6(6):4.DOI:10.3969/j.issn.1672-2337.2008.06.010.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇