✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
自由空间光通信(Free-Space Optical Communication, FSO)作为一种无需光纤等有线媒介,利用大气作为传输信道的无线通信技术,近年来受到越来越多的关注。它具有成本低廉、部署灵活、带宽丰富等优点,在应急通信、城市最后一公里接入、卫星通信等领域具有广阔的应用前景。然而,FSO通信面临着大气湍流、雾霾、雨雪等恶劣天气带来的挑战,这些因素会严重影响光信号的传输质量,降低通信系统的可靠性。因此,选择合适的调制解调方式,并深入分析不同调制方式下的误码率性能,对于优化FSO通信系统的设计至关重要。本文将重点探讨自由空间光通信中常用的三种调制方式:开关键控(On-Off Keying, OOK)、脉冲位置调制(Pulse Position Modulation, PPM)和差分脉冲位置调制(Differential Pulse Position Modulation, DPPM),并分析它们在高斯信道下的误码率性能。
1. 开关键控(OOK)调制解调
开关键控是最简单也是最常用的光强调制方式之一。它通过光信号的有无来代表二进制信息“1”和“0”。 当需要发送“1”时,发送一个脉冲;当需要发送“0”时,不发送脉冲。OOK调制的实现方式简单,成本较低,易于硬件实现。
1.1 OOK调制原理
OOK调制的信号可以表示为:
s(t) = A * p(t) * d(t)
其中:
-
A是脉冲幅度
-
p(t)是脉冲波形,通常采用矩形脉冲
-
d(t)是二进制数据,d(t) ∈ {0, 1}
1.2 OOK解调原理
OOK解调通常采用直接检波(Direct Detection, DD)方式。接收端的光电探测器(Photodiode, PD)将接收到的光信号转换为电信号。由于大气湍流的影响,接收到的电信号会受到噪声的污染。通常采用门限判决的方式进行解调:将接收到的信号与一个预设的门限值进行比较,如果信号高于门限值,则判决为“1”;如果信号低于门限值,则判决为“0”。
1.3 OOK高斯信道误码率分析
在高斯信道中,噪声服从高斯分布。假设接收到的电信号为:
r(t) = s(t) + n(t)
其中 n(t) 是均值为0,方差为σ² 的高斯噪声。
对于OOK调制,我们可以推导出其误码率公式如下:
BER_OOK = Q(A / (2σ))
其中:
-
BER_OOK 是误码率
-
Q(x) 是Q函数,定义为 Q(x) = (1 / √(2π)) ∫x^∞ exp(-t²/2) dt
-
A是信号幅度
-
σ 是噪声的标准差
从公式可以看出,OOK的误码率随着信号幅度的增加而降低,随着噪声强度的增加而升高。
2. 脉冲位置调制(PPM)调制解调
脉冲位置调制是一种利用脉冲位置的不同来代表不同符号的调制方式。与OOK相比,PPM可以在相同的平均功率下获得更高的功率峰值,从而提高接收端的信噪比,降低误码率。
2.1 PPM调制原理
在M阶PPM中,每个符号被划分为M个时隙,只有一个时隙内存在脉冲,其余时隙为空。脉冲所在的时隙位置代表不同的符号值。例如,当M=4时,可以使用4个时隙来表示2比特信息。
2.2 PPM解调原理
PPM解调通常采用最大似然(Maximum Likelihood, ML)检测。接收端将接收到的信号与M个可能的脉冲位置进行相关运算,选择相关值最大的位置作为发送符号的估计值。
⛳️ 运行结果
🔗 参考文献
[1]邓天平.自由空间光通信系统关键技术研究[D].华中科技大学[2025-05-05].DOI:10.7666/d.d093139.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇