【WSN聚类】基于遗传算法GA和细菌算法BC对移动无线传感器进行聚类附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本论文探讨了MWSN中的聚类概念,强调了能量效率在这些网络中的重要性。由于其移动特性,MWSN面临着独特的挑战,包括动态拓扑、可变的节点位置以及能量约束。高效的聚类和簇头选择对于优化功耗和维护网络功能至关重要,这在诸如搜索和救援行动、健康监测以及智能交通控制系统等应用中尤为重要。

关键概念和算法:

  • 聚类与能量效率

    : 研究动态聚类在管理MWSN中能量消耗的作用。

  • 进化算法

    : 侧重于使用遗传算法和细菌结合进行智能簇头选择。

  • 遗传算法 (GA)

    : 实施 GA 以增强簇头选择过程,从而提高能量效率和网络寿命。

  • 细菌结合 (BC)

    : 应用 BC 算法进行高效的簇头选择,展示了聚类速度和簇寿命的提高。

实现:

  • LEACH-M 算法

    : 在 MATLAB 中使用 LEACH-M(移动传感器低功耗自适应聚类分层)算法进行初始实现,为比较提供基线。

  • 使用 GA 和 BC 的增强

    : 后续实现涉及集成 GA 和 BC,以实现更智能、更高效的簇头选择。

结果:

仿真结果表明,与传统方法相比,应用 BC 算法可将聚类速度提高 14%,并延长簇的寿命。

代码仓库结构

  • MatlabCode/

    : 包含用于仿真和算法实现的 MATLAB 代码。

  • Thesis.pdf

    : 完整的论文文档,详细介绍了研究、方法和发现。

  • Data/

    : 包括从仿真中获得的数据集和结果。

关键词

  • 聚类,能量效率,移动无线传感器网络,进化算法,遗传算法,细菌结合

分析与讨论

移动无线传感器网络 (MWSNs) 因其在动态环境中收集和传输数据的能力而在诸多领域获得了广泛应用。然而,其固有的能量约束构成了显著的挑战,直接影响着网络的寿命和可靠性。 本论文针对这一挑战,聚焦于通过智能聚类方法来优化MWSNs的能量效率。

传统的聚类算法通常无法充分适应MWSNs的动态特性,导致能量消耗不均衡和网络寿命缩短。因此,采用进化算法,尤其是遗传算法 (GA) 和细菌结合 (BC),提供了一种更具适应性和鲁棒性的解决方案。

遗传算法通过模拟自然选择的过程,迭代地改进簇头选择方案。该算法能够评估候选方案的适应度函数,并根据其能量效率、节点密度和网络拓扑等指标进行选择、交叉和变异操作。通过这种方式,GA能够逐步寻找到能量消耗最优的簇头配置。

细菌结合 (BC) 算法则模拟细菌间遗传物质的交换过程。与 GA 相比,BC 算法具有更高的收敛速度和更强的局部搜索能力。在 MWSNs 聚类应用中,BC 算法能够快速找到具有较高能量效率的簇头,并有效地延长簇的寿命。论文结果表明,与传统方法相比,BC 算法能够显著提高聚类速度和簇的寿命,这进一步验证了其在 MWSNs 中的应用潜力。

LEACH-M 算法作为基线,突出了传统方法的局限性,并为评估 GA 和 BC 算法的性能提供了参考。将 LEACH-M 与 GA 和 BC 的结果进行比较,清晰地展示了进化算法在优化 MWSNs 能量效率方面的优势。

此外,论文的实现过程,包括 MATLAB 代码和数据集,为未来的研究人员提供了宝贵的资源。 通过这些资源,其他研究人员可以复现论文的结果,并进一步探索和改进基于智能方法的 MWSNs 聚类算法。

结论

本论文通过深入研究和实验,成功地验证了遗传算法和细菌结合算法在优化移动无线传感器网络聚类方面的有效性。研究结果表明,与传统方法相比,进化算法能够显著提高能量效率,延长网络寿命,并提高聚类速度。

该研究成果对于推动 MWSNs 在各个领域的应用具有重要意义,尤其是在那些对能量效率和网络可靠性有较高要求的应用场景中。未来的研究可以进一步探索如何将 GA 和 BC 与其他智能算法相结合,以应对更复杂的 MWSNs 环境和挑战。例如,可以考虑将模糊逻辑、神经网络等技术融入到聚类算法中,以提高其对网络动态变化的适应能力。此外,还可以研究如何将这些算法应用到其他类型的传感器网络中,例如物联网 (IoT) 和工业物联网 (IIoT) 等。

⛳️ 运行结果

🔗 参考文献

[1] 李文雯.无线传感器网络RSSI-GA静止节点与改进MCL移动节点定位算法[D].东华大学[2025-05-05].DOI:CNKI:CDMD:2.1012.311514.

[2] 吕一.基于现代优化算法的曲线识别方法[D].中北大学[2025-05-05].DOI:CNKI:CDMD:2.1013.184306.

[3] 何世钧,代岩岩,周汝雁,等.一种基于遗传聚类的无线传感器网络分簇算法[J].传感器与微系统, 2012, 31(11):4.DOI:10.3969/j.issn.1000-9787.2012.11.039.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值