【可见光通信】可见光通信系统光照度光功率和SNR分布图附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

1. 光照度分布图

  • 概念与意义

    :光照度是指单位面积上所接受可见光的光通量,它在可见光通信系统中对于评估通信区域内光的分布均匀性以及是否满足照明和通信双重需求至关重要。合理的光照度分布不仅能提供良好的照明效果,还能保证光信号的稳定传输。

  • 绘制方法

    • 通常使用光线追踪算法来模拟光在空间中的传播和分布。通过设定光源的位置、强度、发射角度等参数,计算光在不同物体表面的反射、折射和散射情况。

    • 利用专业的光学仿真软件(如 LightTools、TracePro 等)进行建模和仿真,得到通信区域内各个位置的光照度数值。

    • 将这些数值通过色彩编码或等值线的方式绘制在二维或三维图上,形成光照度分布图。例如,使用不同颜色表示不同的光照度范围,暖色(如红色、橙色)表示高照度区域,冷色(如蓝色、绿色)表示低照度区域。

  • 分析要点

    :观察光照度分布图时,需要关注光照度的均匀性,避免出现光照度过高或过低的区域。过高的光照度可能会造成能源浪费和对人眼的不适,而过低的光照度则可能影响通信质量和照明效果。此外,还需注意光照度在不同位置的变化趋势,以评估系统的稳定性和可靠性。

2. 光功率分布图

  • 概念与意义

    :光功率是指光信号所携带的能量大小,它直接影响着可见光通信系统的传输距离和信号质量。光功率分布图展示了光功率在通信区域内的分布情况,有助于了解光信号的强度衰减和覆盖范围。

  • 绘制方法

    • 在实际测量中,可以使用光功率计在通信区域内的不同位置进行测量,记录各个点的光功率数值。

    • 对于仿真分析,同样可以借助光学仿真软件,根据光的传播模型计算光在传播过程中的功率损耗,得到光功率在空间中的分布。

    • 与光照度分布图类似,光功率分布图也可以通过色彩编码或等值线的方式呈现,直观地展示光功率的分布情况。

  • 分析要点

    :重点分析光功率的衰减情况,特别是在通信距离较远或存在障碍物的情况下。如果光功率衰减过快,可能需要增加光源的强度或优化光的传播路径。同时,要关注光功率在接收端的大小,确保其满足接收器的灵敏度要求,以保证可靠的通信。

3. SNR(信噪比)分布图

  • 概念与意义

    :信噪比是指信号功率与噪声功率的比值,它是衡量可见光通信系统性能的关键指标之一。SNR 分布图反映了通信区域内不同位置的信号质量,高 SNR 区域表示信号相对噪声更强,通信质量更好;低 SNR 区域则可能存在误码率较高的问题。

  • 绘制方法

    • 首先需要确定系统中的噪声源,如环境光噪声、电路噪声等,并建立相应的噪声模型。

    • 根据光功率分布和噪声模型,计算出各个位置的 SNR 值。在实际计算中,可能需要考虑光信号的调制方式、传输距离等因素对 SNR 的影响。

    • 将计算得到的 SNR 值绘制在图上,通常使用色彩编码来表示不同的 SNR 范围,例如,高 SNR 区域用亮色表示,低 SNR 区域用暗色表示。

  • 分析要点

    :通过分析 SNR 分布图,可以找出系统中 SNR 较低的区域,这些区域可能是通信的薄弱环节。对于低 SNR 区域,可以采取增加光源功率、优化接收器设计或采用抗干扰技术等措施来提高信号质量。同时,还可以评估不同位置的通信可靠性,为系统的优化和布局提供依据。

⛳️ 运行结果

🔗 参考文献

[1] 杨春勇,杨杰,陈振威,等.室内可见光通信接收机视场角选择与LED分布优化[J].光电子.激光, 2016, 27(5):7.DOI:CNKI:SUN:GDZJ.0.2016-05-006.

[2] 曾碧,洪国南.新型LED阵列分布的室内可见光通信系统模型研究[J].广东工业大学学报, 2017, 34(1):7.DOI:10.12052/gdutxb.160053.

[3] 丁礼伟.基于白光LED的室内可见光MIMO通信系统研究[D].南京邮电大学[2025-05-06].DOI:CNKI:CDMD:2.1015.554032.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值