基于DVMD-NNetEn-CEEMDAN-HPOBP-AVOALSSVM的碳排放混合预测研究附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

全球气候变化日益严峻,控制温室气体排放尤其是碳排放已成为国际社会的共识。准确预测碳排放趋势对于制定有效的减排政策、指导可持续发展具有至关重要的意义。然而,碳排放系统是一个复杂且非线性的巨系统,其影响因素众多且相互交织,导致传统的预测模型往往难以捕捉其内在规律。针对碳排放数据的非线性和非平稳性,本文提出了一种基于分解、重构、优化和集成策略的混合预测模型:DVMD-NNetEn-CEEMDAN-HPOBP-AVOALSSVM。该模型首先采用双层变分模态分解(DVMD)对原始碳排放时间序列进行深度分解,旨在更精细地捕捉不同尺度的波动信息。随后,通过基于神经网络熵(NNetEn)的模态分量重构技术,将分解得到的模态分量进行有效分组,降低噪声干扰和提高模型效率。接下来,运用互补集合经验模态分解(CEEMDAN)对重构后的低频和高频分量分别进行进一步分解,以更全面地揭示其内部复杂性。针对分解得到的不同模态分量,本文创新性地引入了差异化的预测策略:对于相对平稳的分量,采用基于鲸鱼优化算法(WOA)优化超参数的BP神经网络(HPOBP)进行预测,充分利用BP网络的非线性映射能力;对于波动性较强的分量,则采用基于灰狼优化算法(GWO)优化核参数的最小二乘支持向量机(AVOALSSVM)进行预测,发挥LSSVM在处理非线性问题和泛化能力方面的优势。最后,将所有分量的预测结果进行叠加,得到最终的碳排放预测值。通过实际碳排放数据的实验验证,本文提出的DVMD-NNetEn-CEEMDAN-HPOBP-AVOALSSVM混合预测模型在预测精度、稳定性和鲁棒性方面均优于单一模型和其他经典混合模型,为碳排放的精确预测提供了新的思路和方法。

关键词: 碳排放预测;双层变分模态分解;神经网络熵;互补集合经验模态分解;BP神经网络;最小二乘支持向量机;鲸鱼优化算法;灰狼优化算法;混合模型

引言

随着工业化进程的加速和能源消耗的持续增长,全球温室气体浓度不断攀升,由此引发的气候变化问题已成为人类社会面临的最严峻挑战之一。作为主要的温室气体,二氧化碳的排放量与人类活动密切相关,其排放趋势直接影响着全球气候系统的稳定性和未来发展格局。因此,对碳排放进行准确、可靠的预测,对于各国制定科学合理的能源政策、产业结构调整以及减排目标至关重要,也是推动绿色低碳发展和实现可持续未来的基础。

然而,碳排放系统是一个高度复杂、非线性和非平稳的动态过程。其影响因素包括但不限于经济增长、能源结构、技术进步、人口变化、政策法规以及国际贸易等。这些因素之间相互作用、相互耦合,使得碳排放时间序列数据呈现出显著的多尺度特征和非线性波动。传统的统计学方法,如ARIMA、指数平滑等,往往难以捕捉这种复杂的非线性关系和内在波动规律。近年来,基于机器学习和深度学习的预测模型,如支持向量机(SVM)、神经网络(NN)、循环神经网络(RNN)等,在处理非线性问题上展现出较好的性能,但单一模型对于非平稳、多尺度的时间序列数据,其预测精度仍有提升空间。

为了更好地处理复杂时间序列的非线性和非平稳性,研究人员开始探索基于分解-重构的混合预测方法。其核心思想是将原始时间序列分解为若干个相对平稳或具有特定物理意义的模态分量,然后对这些分量分别进行预测,最后将预测结果进行合成。常用的分解方法包括经验模态分解(EMD)、集合经验模态分解(EEMD)、变分模态分解(VMD)等。这些方法能够有效地将非平稳信号分解为一系列本征模态函数(IMF),但仍存在模态混叠、边界效应等问题。VMD作为一种自适应、非递归的信号分解方法,其在处理非线性、非平稳信号方面表现出较好的优势,能够有效抑制模态混叠。然而,传统的VMD分解层数和惩罚因子等参数需要人为设定,影响分解效果的稳定性。

在模态分解之后,如何对分解得到的模态分量进行有效预测是另一个关键问题。由于不同模态分量具有不同的频率特性和波动规律,采用单一预测模型难以充分发挥各模型的优势。因此,针对不同模态分量采用差异化的预测策略已成为一种趋势。此外,单一预测模型的性能往往受到其参数设置的影响,引入智能优化算法对模型参数进行寻优,可以进一步提高预测精度和泛化能力。

基于以上分析,本文提出了一种基于DVMD-NNetEn-CEEMDAN-HPOBP-AVOALSSVM的碳排放混合预测模型,旨在充分利用各种方法的优势,提高碳排放预测的准确性和鲁棒性。该模型首先利用双层VMD对原始碳排放数据进行深度分解,以更精细地获取不同尺度的波动信息;然后,通过神经网络熵对分解得到的模态进行重构,降低噪声并简化预测任务;接着,对重构后的分量采用CEEMDAN进行二次分解,以更全面地揭示其内部结构;最后,根据分量的特性,分别采用经优化算法寻优的BP神经网络和LSSVM进行预测,并将预测结果进行集成。

1. 模型方法

本文提出的DVMD-NNetEn-CEEMDAN-HPOBP-AVOALSSVM混合预测模型主要包含以下步骤:

1.1 双层变分模态分解 (DVMD)

传统的VMD分解层数K是固定的,这限制了其对复杂时间序列的分解能力。为了更精细地捕捉碳排放数据的多尺度特征,本文采用双层VMD进行分解。第一层VMD对原始碳排放时间序列进行分解,得到K1个IMF分量。根据经验判断,通常低频分量承载了主要的趋势和周期信息,而高频分量则包含更多的噪声和随机波动。为了进一步挖掘低频分量的内在规律,本文对第一层VMD得到的最低频IMF分量进行第二次VMD分解,得到K2个子分量。这种双层分解策略旨在更有效地分离不同尺度的波动,为后续的预测提供更清晰的输入。

1.2 基于神经网络熵 (NNetEn) 的模态分量重构

经过DVMD分解后,可能会得到较多的模态分量。直接对所有分量进行预测会增加模型的复杂度和计算量,同时一些高频分量可能包含较多的噪声,对预测精度产生不利影响。因此,需要对分解得到的模态分量进行有效的重构或分组。

神经网络熵(NNetEn)是一种衡量时间序列复杂度的指标,能够反映时间序列的随机性和不确定性。复杂度较高的分量通常对应于高频、随机性强的波动,而复杂度较低的分量则对应于低频、趋势性强的波动。本文利用NNetEn对分解得到的各个模态分量进行复杂度计算,并根据计算结果对模态分量进行聚类重构。复杂度相近的分量被归为同一组,形成新的重构分量。这种重构策略可以在一定程度上降低噪声、平滑高频波动,并减少需要独立预测的分量数量。

具体重构过程如下:首先计算每个模态分量的NNetEn值。然后,根据预设的阈值或聚类算法(如K-means)将具有相似NNetEn值的模态分量进行分组。通常,会将低复杂度(低NNetEn)的分量重构为低频分量,将高复杂度(高NNetEn)的分量重构为高频分量。经过重构,原始序列被简化为少数几个重构分量。

1.3 互补集合经验模态分解 (CEEMDAN)

为了更细致地分析重构后的低频和高频分量的内部结构,本文进一步采用CEEMDAN对它们进行分解。CEEMDAN是在EEMD的基础上发展起来的一种改进方法,通过在原始信号中添加正负成对的白噪声,并计算整体平均,有效解决了EEMD中存在的残余噪声以及模态混叠问题。CEEMDAN能够自适应地将信号分解为一系列具有物理意义的IMF分量和一个残余项。

对重构后的低频分量和高频分量分别进行CEEMDAN分解,可以进一步提取出它们内部不同频率的波动模式。对于低频分量,CEEMDAN可以分离出潜在的长期趋势、周期性波动以及缓慢的扰动;对于高频分量,CEEMDAN可以分离出更精细的短期波动和噪声成分。通过CEEMDAN分解,可以更全面地了解碳排放数据的多尺度特征,为后续差异化预测提供更精细的输入。

1.4 差异化预测模型构建

经过DVMD-NNetEn-CEEMDAN分解后,原始碳排放数据被分解为多个不同的IMF分量。这些分量具有不同的频率特性和复杂程度。为了充分发挥不同预测模型的优势,本文针对分解得到的不同分量构建了差异化的预测模型。

1.4.1 基于鲸鱼优化算法优化超参数的BP神经网络 (HPOBP)

对于经过CEEMDAN分解后得到的相对平稳或具有明显周期性的低频IMF分量,本文采用BP神经网络进行预测。BP神经网络是一种经典的非线性映射模型,具有良好的非线性逼近能力。然而,BP神经网络的性能容易受到其超参数(如学习率、隐含层节点数等)选择的影响。为了提高BP神经网络的预测精度和稳定性,本文引入鲸鱼优化算法(WOA)对BP神经网络的超参数进行寻优。

WOA是一种基于模拟鲸鱼狩猎行为的群智能优化算法,具有收敛速度快、寻优能力强等优点。通过将BP神经网络的超参数作为WOA的优化变量,以预测误差(如均方根误差RMSE)作为适应度函数,WOA可以搜索最优的超参数组合,从而提高BP神经网络的预测性能。

1.4.2 基于灰狼优化算法优化核参数的最小二乘支持向量机 (AVOALSSVM)

对于经过CEEMDAN分解后得到的波动性较强或包含较多噪声的高频IMF分量,本文采用最小二乘支持向量机(LSSVM)进行预测。LSSVM是标准支持向量机(SVM)的一种改进形式,通过将不等式约束替换为等式约束,将二次规划问题转化为线性方程组的求解,从而大大提高了计算效率。LSSVM在处理小样本、非线性和高维问题方面具有独特的优势,泛化能力较强。

LSSVM的性能主要受到其核函数类型和核参数(如径向基核函数RBF的核宽度σ2σ2)以及正则化参数γγ的影响。为了获得最优的LSSVM预测性能,本文引入灰狼优化算法(GWO)对LSSVM的核参数进行寻优。GWO是一种模拟灰狼群体社会等级和狩猎行为的智能优化算法,具有较好的收敛性和全局搜索能力。通过将LSSVM的核参数作为GWO的优化变量,以预测误差作为适应度函数,GWO可以搜索最优的核参数组合,从而提高LSSVM的预测性能。

1.5 预测结果集成

在对所有分解得到的IMF分量分别进行预测后,将所有分量的预测结果进行线性叠加,即可得到最终的碳排放预测值。

Y^(t)=∑i=1Mimf^i(t)

2. 结论与展望

本文提出了一种基于DVMD-NNetEn-CEEMDAN-HPOBP-AVOALSSVM的碳排放混合预测模型,旨在提高碳排放预测的精度和鲁棒性。该模型通过双层VMD和CEEMDAN对碳排放数据进行深度分解,利用神经网络熵进行模态重构,并采用基于智能优化算法寻优的BP神经网络和LSSVM对不同模态分量进行差异化预测,最后将预测结果进行集成。实验结果表明,本文提出的混合预测模型在碳排放预测中具有优越的性能,为碳排放的精确预测提供了有效的方法。

未来的研究可以从以下几个方面展开:

  • 引入更多影响因素:

     将更多的碳排放影响因素(如能源价格、技术进步指标、政策变量等)纳入模型,进一步提高预测的准确性。

  • 考虑模型的实时性:

     研究基于滚动预测或在线学习的碳排放预测模型,以适应不断变化的碳排放系统。

  • 探索更先进的分解和预测方法:

     尝试使用更先进的信号分解方法(如多尺度熵分析、深度学习分解方法)和更强大的预测模型(如Transformer、注意力机制等),进一步提升预测性能。

  • 模型的普适性研究:

     将模型应用于不同区域、不同行业的碳排放预测,验证模型的普适性。

⛳️ 运行结果

图片

图片

🔗 参考文献

[1] 肖茂华,赵远方,耿国盛,等.基于PSOOBP-CS算法的齿轮箱故障诊断方法:CN202111119164.2[P].CN202111119164.2[2025-05-04].

[2] 肖茂华,赵远方,耿国盛,等.基于PSOOBP-CS算法的齿轮箱故障诊断方法:202111119164[P][2025-05-04].

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值