✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代电力电子技术飞速发展的背景下,大量非线性负载接入电网,导致电网中谐波污染、无功功率失衡等电能质量问题日益严重。并联有源电力滤波器(Shunt Active Power Filter,SAPF)作为改善电能质量的有效装置,能够实时检测并补偿电网中的谐波电流和无功电流。而基于 DSPACE 平台结合功率平衡理论构建并联有源电力滤波器模型,为高效、精准地实现电能质量治理提供了可靠的技术手段,对保障电网稳定运行和提高电力设备使用寿命具有重要意义。
并联有源电力滤波器与 DSPACE 平台概述
1. 并联有源电力滤波器的作用与原理
并联有源电力滤波器通过检测电网中的谐波电流和无功电流,产生与之大小相等、方向相反的补偿电流注入电网,从而抵消负载产生的谐波和无功,实现对电能质量的改善。其核心部件包括电流检测电路、控制电路和功率变换电路。电流检测电路实时采集电网电流和负载电流;控制电路根据检测到的信号,通过特定算法计算出需要补偿的电流指令;功率变换电路则根据控制指令生成补偿电流注入电网,达到抑制谐波、补偿无功的目的。
2. DSPACE 平台的优势
DSPACE 是一种基于模型的快速控制原型开发平台,具有强大的实时仿真和控制功能。它能够将 Matlab/Simulink 中的仿真模型快速转化为可在实际硬件上运行的代码,大大缩短了开发周期。同时,DSPACE 平台配备了丰富的 I/O 接口和高精度的 ADC、DAC 模块,可以方便地与外部电路进行连接和数据交互,为并联有源电力滤波器模型的搭建和实验验证提供了便捷、高效的环境。
功率平衡理论在并联有源电力滤波器中的应用
1. 功率平衡理论基础
功率平衡理论基于能量守恒定律,在电力系统中,有功功率和无功功率在各个元件之间的传输和分配遵循一定的平衡关系。对于并联有源电力滤波器而言,通过控制其与电网之间的有功功率和无功功率交换,实现对电网中功率失衡的补偿。在稳态情况下,系统中的有功功率和无功功率应分别保持平衡,即电源发出的有功功率等于负载消耗的有功功率与线路损耗之和,电源发出的无功功率等于负载消耗的无功功率与无功补偿装置提供的无功功率之和。
2. 基于功率平衡的控制策略
在并联有源电力滤波器的控制中,基于功率平衡理论设计控制策略。以谐波和无功电流检测为例,通过对电网侧和负载侧的电压、电流信号进行分析,根据功率平衡关系计算出负载产生的谐波电流和无功电流分量,进而确定需要补偿的电流指令。在补偿过程中,实时监测有源电力滤波器与电网之间的功率交换情况,动态调整补偿电流的大小和相位,确保电网中的功率始终保持平衡,有效改善电能质量。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇