基于节点电价的电网对电动汽车接纳能力评估模型研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在全球倡导绿色出行与可持续发展的大背景下,电动汽车产业迎来了爆发式增长。国际能源署(IEA)发布的《全球电动汽车展望》报告显示,2024 年全球电动汽车销量突破 1700 万辆,市场份额首次突破 20% ,今年一季度,全球电动汽车销量同比激增 35%,主要市场销量均刷新历史纪录。中国作为全球最大的电动汽车市场,2024 年电动汽车销量超 1100 万辆,占全球销量近 2/3,成为推动行业发展的重要引擎。东南亚市场电动汽车销量增长近 50%,市场占有率达 9%,泰国和越南市场表现最为突出。在巴西,电动汽车销量翻番,达到 12.5 万辆,市场占有率突破 6% 。

大量电动汽车接入电网,给电力系统运行带来了前所未有的挑战。电动汽车充电负荷具有明显的波动性与不确定性。由于用户出行习惯和充电需求的随机性,充电时间和功率难以准确预测,这使得电网负荷曲线变得复杂,增加了电力调度和平衡的难度。在某些时段,大量电动汽车集中充电,会导致局部电网负荷急剧上升。当超过电网设备的承载能力时,就会出现线路过载、变压器过热等问题,严重影响电网的安全稳定运行。据统计,在一些电动汽车保有量较高的城市,用电高峰时段,若大量电动汽车同时充电,局部区域的负荷可瞬间增加 20% - 30%,给电网带来巨大压力。

从经济角度来看,电动汽车充电需求的增长,使得电网需要投入更多资金进行升级改造,以满足不断增长的电力需求。建设新的输电线路、扩容变电站、升级配电设备等,都需要巨额的资金投入。这不仅增加了电网企业的运营成本,也可能会通过电价调整等方式,将部分成本转嫁给消费者。此外,不合理的充电行为还可能导致电网运行效率降低,增加能源损耗,进一步提高运营成本。

综上所述,电动汽车的快速发展在带来环保和能源转型机遇的同时,也对电网运行产生了多方面的冲击。准确评估电网对电动汽车的接纳能力,成为保障电网安全稳定运行和促进电动汽车产业健康发展的关键所在。

现有评估方法的局限

为应对电动汽车大规模接入带来的挑战,学术界和工业界已开展了大量关于电网接纳能力评估方法的研究,现有方法主要可分为基于容量裕度的评估方法和基于概率法的评估方法 。

基于容量裕度的评估方法相对简单直接,它主要通过计算电网的剩余容量,即现有供电能力与当前负荷需求的差值,来评估电网对电动汽车的接纳能力。这种方法通常假设电动汽车的充电负荷是确定的,不考虑其随机性和波动性。例如,在评估某区域电网的接纳能力时,会先确定该区域电网的总供电容量,再减去当前各类常规负荷的用电量,得出的剩余容量就是理论上可接纳电动汽车充电的容量。这种方法在数据获取和计算上较为简便,易于理解和应用,能够快速给出一个大致的接纳能力范围。然而,它存在明显的局限性。电网是一个动态运行的复杂系统,其运行状态时刻受到各种因素的影响 。这种方法忽略了电网运行的动态特性,没有考虑到电动汽车充电时间和功率的不确定性,以及电网在不同时刻的负荷变化情况。当大量电动汽车在用电高峰时段集中充电时,即使电网的静态容量裕度足够,也可能因为局部线路或设备的过载,导致电网运行出现问题,无法实际接纳这些电动汽车的充电需求。而且,它也未充分考虑电网的安全稳定性约束,如节点电压偏差、支路潮流限制等,这使得评估结果可能与实际情况存在较大偏差,无法为电网的安全稳定运行提供准确的指导 。

基于概率法的评估方法,考虑了电动汽车充电负荷的随机性,通过建立概率模型来描述充电时间、充电功率等参数的不确定性。常见的是利用蒙特卡洛模拟等方法,随机生成大量的电动汽车充电场景,然后对每个场景下电网的运行状态进行分析,最后通过统计分析得出电网接纳电动汽车的能力。比如,通过收集大量电动汽车用户的出行数据,建立充电时间和起始充电电量的概率分布模型,再利用蒙特卡洛模拟生成数千个不同的充电场景,计算每个场景下电网的节点电压、支路潮流等指标,根据这些指标的统计结果来评估电网的接纳能力 。这种方法能够更全面地反映电动汽车充电负荷的不确定性对电网的影响,评估结果相对更接近实际情况。但它也面临一些问题,计算过程往往非常复杂,需要大量的计算资源和时间。由于涉及到大量的随机模拟和复杂的电力系统计算,对于大规模电网的评估,计算量会呈指数级增长,导致计算效率低下。而且,虽然考虑了充电负荷的随机性,但在反映不同节点的电网承载能力差异方面仍存在不足。在实际电网中,不同地理位置的节点由于电网结构、供电能力和负荷分布等因素的不同,其对电动汽车的接纳能力也有很大差异,而概率法难以精确地体现这些差异,可能会导致评估结果不够准确,无法为电网的精细化规划和运行提供有力支持 。

此外,大多数现有的研究都忽略了节点电价差异对电动汽车充电策略的影响。在实际电力市场中,不同节点的电价会因电力供需关系、输电成本、发电资源分布等因素而有所不同。合理的充电策略能够引导电动汽车在电价较低的节点和时段进行充电,这不仅可以有效降低用户的充电成本,还能减少对电网高峰负荷的冲击,优化电网的负荷曲线,从而提高电网的接纳能力和运行经济性 。而现有评估方法未能充分考虑这一关键因素,使得评估结果无法为电动汽车用户和电网运营商提供关于优化充电策略的有效指导,在实际应用中的价值大打折扣 。

综上所述,现有的电网接纳能力评估方法在应对电动汽车大规模接入的复杂情况时,存在诸多不足。开发一种能够综合考虑节点电价差异、电动汽车充电负荷随机性以及电网安全稳定性约束的评估模型,具有重要的理论和现实意义。

基于节点电价的评估模型解析

(一)模型框架搭建

为了精确评估电网对电动汽车的接纳能力,我们构建了一个基于优化理论的评估模型。该模型以最小化电网运行成本为核心目标函数,全面考虑了发电成本与电动汽车充电成本这两大关键组成部分。发电成本与发电机的出力紧密相关,综合反映了不同发电方式的燃料成本、设备损耗以及运营维护费用等。在实际电力系统中,不同类型的发电机组,如火电、水电、风电和光伏等,其发电成本特性差异显著。火电的成本主要受煤炭、天然气等燃料价格的影响,同时还涉及到机组的启停成本和效率损耗;水电的成本则相对较为稳定,主要取决于水资源的开发利用和设备维护;风电和光伏作为清洁能源,虽然发电成本相对较低,但受到自然条件的限制,具有较强的间歇性和不确定性 。

而电动汽车充电成本函数则充分考虑了不同节点的电价差异。在实际电网中,由于电力供需的不平衡、输电网络的损耗以及不同地区的能源政策等因素,各个节点的电价呈现出明显的时空变化特性。在用电高峰时段,电力需求旺盛,发电成本增加,导致节点电价上升;而在用电低谷时段,电力供应相对充足,节点电价则相对较低。此外,不同地理位置的节点,由于输电距离、电网结构以及电源分布的不同,其电价也会有所不同。例如,靠近发电中心的节点,由于输电损耗较小,电价可能相对较低;而远离发电中心、位于电网末端的节点,由于输电成本较高,电价则可能较高。这种节点电价的差异为电动汽车用户提供了选择充电节点和时间的经济激励,通过合理引导电动汽车的充电行为,可以有效降低电网的运行成本,提高电网的接纳能力 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值