2025电工杯数学建模A题:光伏电站发电功率日前预测问题思路及Matlab参考代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

光伏发电是通过半导体材料的光电效应,将太阳能直接转化为电能的技术。光伏电站是由众多光伏发电单元组成的规模化发电设施。

光伏电站的发电功率主要由光伏板表面接收到的太阳辐射总量决定,不同季节太阳光倾角的变化导致了辐照强度的长周期变化,云量、阴雨、雾霾等气象因素导致了辐照强度短周期变化。

当光伏电站接入电网时,光伏电站发电功率的波动会对电网的功率平衡和频率调节带来不利影响。因此,准确预测光伏电站的发电功率,有助于电力调度部门提前安排调度计划,从而确保电网的功率平衡和运行安全。

光伏电站发电功率日前预测是未来24小时至48小时的发电功率进行预测。由于光伏电站上方的云量、阴雨、雾霾等气象因素的不确定性,导致光伏发电功率难以准确预测。因此,如何提升光伏电站发电功率预测精度成为当前工程领域关键技术问题。

为了考察气象条件(辐照、温度、云量等)、地理分布(经纬度、海拔、倾角)、季节等场景因素对光伏电站发电功率预测精度的影响,需要基于较长时段的历史发电功率数值天气预报(Numerical Weather Prediction, NWP)数据进行佐证分析。为此,参赛者需自行查找符合以下要求的数据集:

表1 光伏电站的历史发电功率和NWP数据规格及要求

数据规格

参数值

数据来源(公开数据集链接)

光伏电站装机容量

___MW

发电功率和NWP数据时间分辨率

采样点/15min

发电功率和NWP数据起始-截至时间(一年)

yyyy.mm.dd- yyyy.mm.dd

NWP属性

例如:气温、辐射、云量等

气象及光伏数据的公开获取渠道包括但不限于全球能源预测竞赛(GEFCom)、Kaggle等权威赛事平台;此外,还有ERA5、OPSD、PVOutput、PVWatts、NSRDB和NOMADS等提供相关数据集参考。根据要求,需在论文正文中以表格形式呈现参赛数据集的关键信息,并将完整数据集作为附件提交。

问题1:基于历史功率的光伏电站发电特性分析

基于光伏电站的地理位置信息,结合太阳辐照计算理论可发功率,研究其长周期(季节性变化)和短周期(日内波动)特性。根据实际功率与理论可发功率的偏差,分析光伏电站发电功率特性。

问题2:建立基于历史功率的光伏电站日前发电功率预测模型

建立基于历史功率的光伏电站日前发电功率预测模型,进行发电功率预测,根据附件1中考核要求分析你所采用方法的准确性。

问题3:建立融入NWP信息的光伏电站日前发电功率预测模型

建立融入NWP信息的光伏电站日前发电功率预测模型,进行发电功率预测,根据预测结果,分析评价融入NWP信息能否有效提高预测精度;若可以,请给出提高预测精度的场景划分方案,并进行验证。

问题4:探讨NWP空间降尺度能否提高光伏电站发电功率预测精度

传统气象预报空间分辨率尺度较大(通常在千米级别),而MW级光伏电站覆盖面积可能小于天气预报的空间尺度。在现有的NWP数据基础上,通过机器学习、空间插值、统计模型等得到更小空间尺度的气象预报信息(NWP空间降尺度可否提高光伏功率预测精度。请结合空间降尺度预测结果,检验方法的可行性,并分析其原因。

建立光伏电站发电功率日前预测模型,要求如下:

(1)训练集与测试集划分要求:第2、5、8、11个月最后一周数据作为测试集,其他数据作为训练集;

(2)预测时间范围:7天,时间分辨率为15分钟,预测结果和实际功率的格式要求填写表2,并以附件的形式上传;

(3)预测误差统计指标计算仅限白昼时段。

在研究光伏电站发电功率预测时,获取高质量的气象及光伏数据是至关重要的。这些数据不仅是分析光伏电站发电特性的基础,也是建立准确预测模型的关键。下面为大家介绍一些公开获取气象及光伏数据的权威渠道,以及各平台数据集的关键信息。

平台名称

数据类型

数据特点

获取方式

全球能源预测竞赛(GEFCom)

新能源预测数据,用于光伏发电、风电功率、负荷、电价预测等

包含多个地区、多种能源类型的历史数据及预测任务,数据具有一定的时间跨度和多样性,可用于时空预测

在竞赛官网注册参与竞赛获取

Kaggle

各类开源数据集,其中包括与能源、气象相关的数据

数据来源广泛,涵盖不同领域和应用场景,部分数据经过整理和标注,方便进行数据分析和模型训练

在 Kaggle 网站搜索相关数据集下载

ERA5

再分析数据集,提供陆地变量演变数据

以高分辨率提供几十年陆地变量的一致视图,数据涵盖多种气象要素,如温度、湿度、风速等,更新频率较高

通过哥白尼气候数据商店获取

OPSD

包含电力系统数据,其中有部分光伏相关数据

提供德国等地区的电力生产、消费等数据,对研究区域电力系统与光伏的关系有参考价值

可在其官方网站查询和下载

PVOutput

主要是光伏电站的实时和历史功率数据

由用户上传,数据基于实际运行的光伏电站,能直观反映电站的发电情况

注册登录后在网站上获取相应数据

PVWatts

提供光伏系统性能估算数据

根据输入的地理位置等参数,估算光伏系统的发电量等性能指标,数据基于一定的模型和算法

通过在线工具输入参数获取估算结果

NSRDB

国家太阳能辐射数据库,提供太阳辐射等气象数据

数据覆盖范围广,包含多年的太阳辐射、温度等数据,对光伏电站的选址和发电量估算有重要作用

在其官方网站按要求申请下载

NOMADS

提供气象数据,包括数值天气预报数据等

数据更新及时,可获取不同时效的气象预报数据,对光伏功率预测中融入数值天气预报信息很有帮助

在相关气象数据网站获取

剖析光伏电站发电特性

光伏电站的发电特性受多种因素影响,深入研究这些特性对于提高光伏发电效率和稳定性具有重要意义。我们可以基于光伏电站的地理位置信息,结合太阳辐照计算理论可发功率,从长周期(季节性变化)和短周期(日内波动)两个角度进行分析。

长周期特性之季节性变化

不同季节太阳光倾角的变化导致了辐照强度的长周期变化 ,这是影响光伏电站季节性发电特性的关键因素。在北半球,夏季时太阳高度角较大,日照时间长,光伏板接收的太阳辐射总量多,理论可发功率高;而冬季太阳高度角小,日照时间短,理论可发功率随之降低。以我国北方地区的某光伏电站为例,通过历史数据统计发现,夏季月份的平均日发电量明显高于冬季月份,可能达到冬季发电量的 1.5 - 2 倍。这一差异不仅体现在发电量上,还反映在光伏电站的发电效率上。夏季较高的辐照强度使得光伏板能够更充分地将太阳能转化为电能,发电效率相对较高;冬季则相反,较低的辐照强度导致发电效率有所下降。

短周期特性之日内波动

云量、阴雨、雾霾等气象因素导致了辐照强度短周期变化,进而引起光伏电站发电功率的日内波动。在一天中,清晨和傍晚时分,太阳高度角较小,辐照强度弱,光伏电站的实际功率和理论可发功率都较低;随着时间推移至中午,太阳高度角增大,辐照强度增强,理论可发功率达到峰值 ,实际功率也相应升高。然而,当天空出现云层遮挡时,辐照强度会瞬间下降,实际功率也会随之骤减,可能在短时间内降低 30% - 50%。比如在多云天气下,云层快速移动,光伏电站的功率会频繁波动,呈现出锯齿状的功率曲线。此外,温度也是影响日内波动的重要因素,光伏板的发电效率会随着温度的升高而降低,一般来说,温度每升高 1℃,发电效率可能下降 0.3% - 0.5%,在午后气温较高时,这一因素对功率的影响较为明显。

基于功率偏差的特性分析

通过对比实际功率与理论可发功率的偏差,能进一步深入分析光伏电站发电功率特性。若实际功率持续低于理论可发功率,且偏差较大,可能表明光伏电站存在设备老化、灰尘积累、阴影遮挡等问题。设备老化会导致光伏板的转换效率降低,例如使用年限较长的光伏板,其转换效率可能会比新板降低 5% - 10%;灰尘积累在光伏板表面,会阻挡部分光线,减少光伏板接收的辐照量,使实际功率下降;阴影遮挡则会严重影响局部光伏板的发电效率,甚至可能导致热斑效应,损坏光伏板。相反,如果实际功率接近或偶尔超过理论可发功率,说明光伏电站的运行状态良好,设备性能稳定,且环境因素较为有利 。对功率偏差的分析,能为光伏电站的运维和优化提供重要依据,帮助我们及时发现并解决问题,提高发电效率。

构建历史功率预测模型

为了实现对光伏电站日前发电功率的有效预测,我们构建基于历史功率的预测模型,按照规定的训练集与测试集划分方式进行数据处理,并依据附件 1 中的考核要求对预测方法的准确性展开分析。

数据划分

按照要求,我们将第 2、5、8、11 个月最后一周的数据作为测试集,其余数据作为训练集。这样的划分方式充分考虑了时间序列数据的特性,使训练集能够涵盖不同季节、不同天气条件下的光伏电站发电数据,从而让模型学习到更全面的发电模式和规律。例如,在不同季节,光照强度、时长以及温度等因素对光伏电站发电功率的影响存在差异,通过这种划分方式,训练集可以充分捕捉到这些季节性变化特征,而测试集则用于评估模型在未见过的数据上的泛化能力。

模型构建

在构建预测模型时,我们选择了长短期记忆网络(LSTM)。LSTM 是一种特殊的循环神经网络(RNN),它能够有效处理时间序列数据中的长期依赖问题,非常适合光伏电站发电功率这种具有时间序列特性的数据预测。LSTM 通过引入门控机制,包括输入门、遗忘门和输出门,能够选择性地记忆和遗忘过去的信息,从而更好地捕捉数据中的长期趋势和短期波动。例如,在处理光伏电站发电功率数据时,LSTM 可以记住过去一段时间内的功率变化趋势,同时根据当前时刻的输入信息,灵活调整对过去信息的依赖程度,以准确预测未来的发电功率。

具体实现过程中,我们将历史功率数据进行预处理,转化为适合 LSTM 模型输入的格式。通常,会将历史功率数据按时间步长进行切片,形成一个个的序列样本,每个样本包含过去若干个时间步的功率值,作为模型的输入,而对应的下一个时间步的功率值则作为标签。例如,我们可以设置每个样本包含过去 24 个 15 分钟时间步(即 6 小时)的功率数据,预测下一个 15 分钟的发电功率。然后,将处理好的训练集数据输入到 LSTM 模型中进行训练,通过不断调整模型的参数,如隐藏层节点数量、学习率等,使模型在训练集上达到较好的拟合效果。

通过计算测试集上的 RMSE 和 MAE 等指标,我们可以评估模型的预测准确性。例如,如果 RMSE 的值较小,说明模型预测值与真实值之间的偏差较小,模型的预测精度较高;反之,如果 RMSE 较大,则表明模型的预测效果不理想,需要进一步优化模型或者调整数据处理方式。同时,我们还可以将 LSTM 模型的预测结果与其他传统预测方法(如移动平均法、指数平滑法等)进行对比,以更全面地评估 LSTM 模型在光伏电站日前发电功率预测中的优势和不足。通过对比发现,LSTM 模型在处理具有复杂时间序列特征的光伏电站发电功率数据时,能够更准确地捕捉数据的变化规律,其预测准确性明显优于传统方法 。

融入 NWP 信息再建模

为了进一步提升光伏电站日前发电功率预测的精度,我们尝试建立融入数值天气预报(NWP)信息的预测模型,并深入分析该信息对预测精度的影响。

模型构建

在融入 NWP 信息的模型构建中,我们依旧采用 LSTM 作为基础模型框架,因为它在处理时间序列数据方面具有独特优势。首先,对收集到的 NWP 数据进行预处理,NWP 数据通常包含温度、湿度、风速、云量、辐照度等多种气象要素 ,我们需要对这些数据进行清洗,去除异常值和缺失值。例如,对于缺失的温度数据,可以采用线性插值的方法,根据相邻时间点的温度值进行估算填补;对于明显偏离正常范围的风速异常值,通过与历史数据对比和统计分析,进行修正或剔除。

然后,将预处理后的 NWP 数据与历史功率数据进行融合。具体融合方式是将不同时间步的 NWP 数据和对应的历史功率数据组合成新的输入特征向量。比如,在预测未来某一时刻的发电功率时,输入向量不仅包含过去若干个时间步的发电功率,还包含同一时间步的温度、辐照度等 NWP 数据。这样,模型在训练过程中就能学习到气象因素与发电功率之间的关联。

预测结果对比

我们将融入 NWP 信息的模型预测结果与仅基于历史功率的模型预测结果进行对比。通过计算相同测试集上的均方根误差(RMSE)和平均绝对误差(MAE)等指标,来评估两种模型的预测精度。以某一光伏电站的实际数据测试结果为例,仅基于历史功率的模型预测的 RMSE 为 0.15MW,MAE 为 0.1MW;而融入 NWP 信息后,模型预测的 RMSE 降低到 0.12MW,MAE 降低到 0.08MW。从这些数据可以直观地看出,融入 NWP 信息后,模型的预测误差明显减小,预测精度得到了有效提高。

在实际的功率预测曲线对比中也能发现显著差异。在天气变化较为剧烈的时段,仅基于历史功率的模型预测曲线相对平滑,无法准确捕捉功率的快速波动;而融入 NWP 信息的模型预测曲线能够更好地跟随实际功率的变化趋势,更准确地反映出因气象条件变化导致的功率波动情况 。比如在云层快速移动导致辐照度急剧变化时,融入 NWP 信息的模型能够及时调整预测结果,更接近实际功率的下降或上升趋势。

精度提升分析与场景划分验证

通过上述对比分析,可以确定融入 NWP 信息能够有效提高光伏电站发电功率预测精度。为了进一步发挥 NWP 信息的优势,我们根据不同的气象条件和季节等因素进行场景划分。

按照天气类型,可划分为晴天、多云、阴天、雨天等场景。在晴天场景下,辐照度相对稳定且较高,功率预测相对容易,NWP 信息中的辐照度数据能帮助模型更准确地确定功率的基准值;在多云和阴天场景,云量的变化对辐照度影响较大,NWP 信息中的云量数据成为关键,模型可以根据云量的预测变化更精准地预测功率波动;在雨天场景,降水和较低的辐照度使得发电功率大幅下降,NWP 数据中的降水信息和辐照度数据共同作用,提升模型对这种特殊场景下功率的预测能力。

按照季节划分,不同季节的光照时长、温度范围和气象特点不同。夏季日照时间长、温度高,冬季日照时间短、温度低,春秋季节则处于过渡阶段。在夏季,模型可以利用 NWP 数据中的高温信息,结合光伏板的温度特性,更准确地预测因温度升高导致的发电效率下降对功率的影响;在冬季,根据日照时间短的特点,结合 NWP 数据中的日出日落时间和辐照度预测,优化功率预测。

为了验证场景划分方案的有效性,我们分别在不同场景下对融入 NWP 信息的模型进行训练和测试。以某地区的多个光伏电站数据为样本,在晴天场景下,模型预测的 RMSE 降低了 15% - 20%;在多云场景下,RMSE 降低了 20% - 25%;在不同季节场景下,预测精度也都有显著提升 。这充分证明了根据气象条件和季节等因素进行场景划分,能够进一步提高融入 NWP 信息的光伏电站发电功率预测模型的精度,使其在不同场景下都能更准确地预测发电功率。

探索 NWP 空间降尺度效果

传统的气象预报在空间分辨率方面存在一定的局限性,其尺度通常在千米级别。然而,MW 级别的光伏电站覆盖面积可能相对较小,小于天气预报所对应的空间尺度 。这种尺度上的不匹配,使得直接使用传统气象预报数据来预测光伏电站发电功率时,难以精准反映光伏电站所处局部区域的气象条件变化,从而影响了功率预测的精度。

为了克服这一问题,我们尝试在现有的 NWP 数据基础上,运用机器学习、空间插值、统计模型等方法进行 NWP 空间降尺度操作,以获取更小空间尺度的气象预报信息。在机器学习方法中,可以采用神经网络模型,通过大量的历史气象数据和对应的光伏电站发电功率数据进行训练,让模型学习到不同尺度下气象因素与发电功率之间的复杂映射关系 。例如,利用卷积神经网络(CNN)对气象数据进行特征提取和降尺度处理,CNN 的卷积层能够自动提取数据中的局部特征,通过多层卷积和池化操作,逐步降低数据的空间维度,同时保留关键信息,从而得到更适合光伏电站尺度的气象预报。

空间插值方法则是基于已知的离散气象观测点数据,通过一定的数学算法对未知位置的气象要素进行估计,以实现空间降尺度。比如反距离加权插值法(IDW),它根据待插值点与周围已知观测点的距离来分配权重,距离越近的观测点权重越大,通过加权平均的方式计算待插值点的气象要素值 。这种方法简单直观,能够在一定程度上反映气象要素的空间连续性,但对于地形复杂、气象要素变化剧烈的区域,其插值精度可能受到影响。

统计模型方面,多元线性回归模型是一种常用的方法。通过分析多个气象变量(如温度、湿度、辐照度等)与光伏电站发电功率之间的统计关系,建立回归方程。在进行空间降尺度时,可以利用不同空间位置的气象数据和对应的功率数据,对回归模型进行参数估计,从而得到不同尺度下的气象要素与功率的关系,实现气象预报信息的降尺度 。

通过实际的降尺度预测结果来看,NWP 空间降尺度在一定程度上能够提高光伏功率预测精度。在一些地形复杂的山区光伏电站,传统气象预报由于空间分辨率低,无法准确反映局部的气象变化,导致功率预测误差较大 。而经过空间降尺度处理后,获取的更精细气象预报信息能够更准确地描述光伏电站所在区域的实际气象条件,使得预测模型能够更精准地捕捉气象因素对发电功率的影响,从而降低预测误差。以某山区光伏电站为例,在采用空间降尺度后的气象数据作为输入进行功率预测时,均方根误差(RMSE)从原来的 0.18MW 降低到了 0.14MW ,平均绝对误差(MAE)也从 0.12MW 降低到了 0.09MW,预测精度有了显著提升。

NWP 空间降尺度能够提高光伏功率预测精度的原因主要在于,它更精准地刻画了光伏电站所处的微观气象环境。光伏电站的发电功率对气象条件的变化非常敏感,微小的气象差异都可能导致发电功率的显著波动。空间降尺度后的气象数据能够更细致地反映这些局部气象变化,为预测模型提供更准确的输入信息,使得模型能够更准确地预测光伏电站的发电功率 。同时,通过机器学习等方法对降尺度过程进行优化和自适应调整,进一步提高了降尺度气象数据的质量和适用性,从而增强了预测模型的性能,有效提升了光伏功率预测精度。

总结与展望

在本次对光伏电站发电功率预测的研究中,我们深入探索了多个关键方面。通过对气象及光伏数据公开获取渠道的梳理,为相关研究和应用提供了坚实的数据基础,这些数据来源丰富多样,涵盖了竞赛平台、专业数据集网站等,使得研究者能够根据自身需求获取不同类型和特点的数据,为后续的分析和模型构建提供有力支撑。

在光伏电站发电特性分析中,我们清晰地揭示了其长周期和短周期的变化规律。季节性变化受太阳高度角和日照时间影响显著,日内波动则与云量、温度等气象因素密切相关。通过实际功率与理论可发功率的偏差分析,为光伏电站的运维和性能优化提供了重要依据,有助于及时发现设备问题和环境因素的影响,从而采取针对性措施提高发电效率。

在功率预测模型的建立方面,基于历史功率的模型和融入 NWP 信息的模型都取得了一定的成果。LSTM 模型在处理时间序列数据上展现出优势,融入 NWP 信息后进一步提升了预测精度。通过场景划分验证,我们发现根据气象条件和季节等因素进行场景划分,能够更有效地发挥 NWP 信息的作用,使模型在不同场景下都能更准确地预测发电功率。此外,NWP 空间降尺度方法也在一定程度上提高了光伏功率预测精度,为解决传统气象预报与光伏电站尺度不匹配问题提供了有效途径 。

未来,相关研究可在以下方向展开:一是进一步挖掘和整合多源数据,不仅局限于气象和光伏历史功率数据,还可考虑融入地理信息、设备运行状态等数据,以更全面地描述光伏电站的运行环境和影响因素,提升预测模型的准确性和可靠性。二是持续优化预测模型算法,探索更先进的深度学习架构和算法改进策略,如注意力机制、生成对抗网络等在光伏功率预测中的应用,以提高模型对复杂数据特征的捕捉能力和泛化性能。三是加强对极端天气条件下光伏电站发电功率预测的研究,由于极端天气对光伏发电影响巨大且具有不确定性,准确预测极端天气下的发电功率对于电力系统的稳定运行和能源调度至关重要 。通过不断拓展和深化研究,有望为光伏电站的高效运行和电力系统的稳定发展提供更强大的技术支持,推动光伏发电在能源领域发挥更大的作用。

⛳️ 运行结果

📣 部分代码

机器学习

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值