✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
景
布里渊区在固体物理领域占据核心地位,它是描述晶体中电子运动状态的关键概念。通过研究布里渊区,能够深入理解晶体的电子能带结构、晶格振动等物理性质。简约布里渊区作为布里渊区的一种简化表示形式,舍去冗余信息,保留核心特征,对于分析晶体周期性和对称性意义重大 。随着计算机技术的发展,通过仿真手段直观呈现简约布里渊区图景,成为研究和教学的重要辅助工具。
1.2 研究目的
本研究旨在通过编程实现简约布里渊区图景的仿真,以可视化方式清晰展示不同晶体结构下简约布里渊区的形状、大小及对称性,帮助科研人员和学习者更直观地理解布里渊区相关理论,为后续晶体物理性质研究提供基础。
二、简约布里渊区相关理论基础
2.1 晶体结构与倒易空间
晶体具有周期性结构,可通过正空间晶格矢量描述。倒易空间是与正空间晶格相对应的概念,其晶格矢量(倒格矢)与正空间晶格矢量满足特定关系。倒易空间中的点对应正空间中的晶面,倒格矢的大小和方向反映了晶面的间距和取向 。
2.2 布里渊区的定义与构建
布里渊区是倒易空间中以某一倒格点为中心,由满足特定条件(如从该倒格点到其他倒格点连线的垂直平分面)的区域构成。简约布里渊区则选取其中包含最小波矢的区域,使得每个布里渊区中的波矢都能在简约布里渊区中找到等价表示,从而简化对晶体电子状态的描述 。
2.3 常见晶体结构的简约布里渊区特点
简单立方、体心立方、面心立方等常见晶体结构,因其晶格对称性不同,对应的简约布里渊区形状和对称性也存在差异。例如,简单立方晶体的简约布里渊区为立方体,体心立方晶体的简约布里渊区为截角八面体,面心立方晶体的简约布里渊区为菱形十二面体 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类