【物理应用】基于matlab的简约布里渊区图景仿真

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

布里渊区在固体物理领域占据核心地位,它是描述晶体中电子运动状态的关键概念。通过研究布里渊区,能够深入理解晶体的电子能带结构、晶格振动等物理性质。简约布里渊区作为布里渊区的一种简化表示形式,舍去冗余信息,保留核心特征,对于分析晶体周期性和对称性意义重大 。随着计算机技术的发展,通过仿真手段直观呈现简约布里渊区图景,成为研究和教学的重要辅助工具。

1.2 研究目的

本研究旨在通过编程实现简约布里渊区图景的仿真,以可视化方式清晰展示不同晶体结构下简约布里渊区的形状、大小及对称性,帮助科研人员和学习者更直观地理解布里渊区相关理论,为后续晶体物理性质研究提供基础。

二、简约布里渊区相关理论基础

2.1 晶体结构与倒易空间

晶体具有周期性结构,可通过正空间晶格矢量描述。倒易空间是与正空间晶格相对应的概念,其晶格矢量(倒格矢)与正空间晶格矢量满足特定关系。倒易空间中的点对应正空间中的晶面,倒格矢的大小和方向反映了晶面的间距和取向 。

2.2 布里渊区的定义与构建

布里渊区是倒易空间中以某一倒格点为中心,由满足特定条件(如从该倒格点到其他倒格点连线的垂直平分面)的区域构成。简约布里渊区则选取其中包含最小波矢的区域,使得每个布里渊区中的波矢都能在简约布里渊区中找到等价表示,从而简化对晶体电子状态的描述 。

2.3 常见晶体结构的简约布里渊区特点

简单立方、体心立方、面心立方等常见晶体结构,因其晶格对称性不同,对应的简约布里渊区形状和对称性也存在差异。例如,简单立方晶体的简约布里渊区为立方体,体心立方晶体的简约布里渊区为截角八面体,面心立方晶体的简约布里渊区为菱形十二面体 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
引言 非线性函数极值寻优是工程优化和科学计算中的核心问题,传统方法在处理高维、多峰或不可导函数时往往效果不佳。神经网络与遗传算法的结合为解决这类复杂优化问题提供了新思路。本文将从计算机专业角度,详细分析神经网络遗传算法在非线性函数极值寻优中的原理、实现方法及优化策略。 混合算法原理与架构 遗传算法(GA)与神经网络(NN)的混合架构充分发挥了两者的优势:神经网络提供强大的非线性拟合能力,遗传算法则提供全局搜索能力。该混合系统的工作流程可分为三个关键阶段: 神经网络建模阶段:构建BP神经网络结构(如2-5-1),通过训练数据学习目标函数的输入输出关系。激活函数通常选择Sigmoid或ReLU,损失函数采用均方误差(MSE)。 遗传算法优化阶段:将神经网络参数编码为染色体(实数编码),以网络预测精度作为适应度函数fitness = 1/(1+MSE)。通过选择、交叉(概率0.4-0.9)和变异(概率0.01-0.2)操作进化种群。 协同优化阶段:遗传算法优化后的参数初始化神经网络,再进行BP微调,形成"全局搜索+局部优化"的双重机制。 关键技术实现 神经网络建模 采用MATLAB的Neural Network Toolbox实现,关键步骤包括: net = feedforwardnet([5]); % 单隐藏层5神经元 net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法 net = train(net, input, target); % 网络训练 遗传算法优化 适应度函数设计与参数编码是核心: function fitness = ga_fitness(x) = sim(net, x'); % 神经网络预测 fitness = 1/(1+mse(y-target)); end 种群规模建议50-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值