✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
1.1 研究背景与意义
随着科技的飞速发展,无人机在民用和军事领域的应用越来越广泛。在民用方面,无人机被用于物流配送、农业植保、测绘、电力巡检、影视拍摄等诸多场景。在军事领域,无人机可执行侦察、监视、攻击等任务。多无人机协同作业能够显著提高任务执行效率,如在物流配送中,多架无人机可同时向不同地点运送货物,大大缩短配送时间;在测绘任务里,多架无人机可从不同角度对目标区域进行测绘,获取更全面的数据 。
然而,随着无人机数量的增加和应用场景的日益复杂,多无人机之间以及无人机与障碍物之间的碰撞风险也大幅提高。碰撞事故不仅会导致无人机自身的损坏,造成经济损失,还可能引发一系列安全问题,如在城市区域飞行时,坠落的无人机可能会对地面人员和建筑物造成伤害;在军事行动中,无人机碰撞可能导致任务失败,甚至泄露军事机密 。因此,研究多无人机避碰技术对于保障无人机安全飞行、推动无人机行业的健康发展具有重要意义。
1.2 国内外研究现状
国内外众多学者和研究机构在多无人机避碰技术方面开展了大量研究。在国外,一些先进的研究成果已经在实际应用中得到验证。例如,美国的一些研究团队利用分布式算法实现多无人机的自主避碰,通过无人机之间的信息交互和局部决策,有效避免了碰撞的发生。在欧洲,部分研究侧重于利用传感器融合技术,结合激光雷达、视觉传感器等多种设备,提高无人机对周围环境的感知能力,从而实现更精准的避碰 。
在国内,多无人机避碰技术也受到了广泛关注。高校和科研机构纷纷开展相关研究,取得了一系列成果。一些研究通过改进传统的人工势场法,解决了局部最小值和目标不可达等问题,提高了避碰算法的效率和可靠性。同时,国内在多无人机协同控制和通信技术方面也取得了一定进展,为避碰技术的发展提供了有力支持 。
然而,现有研究在将扩展卡尔曼滤波器(EKF)、无迹卡尔曼滤波器(UKF)与模型预测控制(MPC)相结合用于多无人机避碰方面仍存在不足。EKF 和 UKF 作为常用的状态估计方法,在处理无人机的非线性模型时各有优劣,但目前对于如何在多无人机避碰场景中更有效地选择和融合这两种方法,还缺乏深入研究。MPC 在多无人机避碰中的应用虽然取得了一定成果,但在计算效率和实时性方面仍有待提高,尤其是在处理大规模多无人机系统时,计算负担较重,难以满足实时避碰的需求 。
1.3 研究目标与内容
本研究旨在通过深入研究扩展卡尔曼滤波器(EKF)、无迹卡尔曼滤波器(UKF)和模型预测控制(MPC)算法,设计并实现一种高效的多无人机避碰系统,以提高多无人机在复杂环境下的安全飞行能力。具体研究内容如下:
- EKF 和 UKF 算法研究:分析 EKF 和 UKF 在多无人机状态估计中的性能特点,包括精度、计算复杂度等。针对无人机的非线性运动模型,研究如何优化 EKF 和 UKF 的参数设置,以提高状态估计的准确性和稳定性。同时,探讨在不同噪声环境下,两种算法的适应性和鲁棒性。
- MPC 算法研究:深入研究 MPC 在多无人机避碰中的应用,建立考虑无人机动力学约束和避碰约束的 MPC 模型。优化 MPC 的目标函数和约束条件,以实现多无人机在避碰的同时,满足任务需求,如保持编队飞行、按时到达目标地点等。研究 MPC 的求解算法,提高计算效率,以满足实时性要求。
- EKF、UKF 与 MPC 结合的多无人机避碰系统设计:将 EKF 和 UKF 与 MPC 算法有机结合,设计一种多无人机避碰系统。根据不同的飞行场景和任务需求,实现 EKF 和 UKF 的自适应切换,为 MPC 提供更准确的状态估计。通过 MPC 算法生成无人机的控制指令,实现多无人机的避碰和协同飞行。
- 系统验证与分析:利用仿真软件对设计的多无人机避碰系统进行仿真验证,分析系统在不同场景下的性能表现,如避碰成功率、飞行轨迹平滑度、计算时间等。根据仿真结果,对系统进行优化和改进。搭建多无人机实验平台,进行实物实验,进一步验证系统的有效性和可靠性。
二、相关理论基础
2.1 扩展卡尔曼滤波器(EKF)
2.1.1 EKF 基本原理
扩展卡尔曼滤波器(EKF)是卡尔曼滤波器在非线性系统中的扩展。在实际的多无人机系统中,无人机的运动模型往往呈现出非线性特征,难以直接运用传统的卡尔曼滤波器进行状态估计。EKF 的核心思想是通过泰勒级数展开,将非线性系统在当前状态估计值附近进行线性化处理,使其能够近似满足卡尔曼滤波的线性假设,进而利用卡尔曼滤波的框架实现对系统状态的估计 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 乔相伟,周卫东,吉宇人.用四元数状态切换无迹卡尔曼滤波器估计的飞行器姿态[J].控制理论与应用, 2012, 29(1):7.DOI:10.7641/j.issn.1000-8152.2012.1.ccta100514.
[2] 段方,刘建业,李荣冰.基于平淡卡尔曼滤波器的微小卫星姿态确定算法[J].上海交通大学学报, 2005, 39(11):5.DOI:10.3321/j.issn:1006-2467.2005.11.038.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇