✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本研究针对多时相 InSAR(Interferometric Synthetic Aperture Radar,合成孔径雷达干涉测量)中空间变化的大气延迟问题,提出一种分层大气延迟校正联合模型。通过分析大气延迟在空间上的分层特性及其对 InSAR 测量精度的影响,构建结合大气分层理论与 InSAR 相位信息的联合模型。详细阐述模型的参数反演与校正算法,利用真实 InSAR 数据进行实验验证。结果表明,该联合模型能够有效校正空间变化的分层大气延迟,显著提高 InSAR 形变测量的精度,为基于多时相 InSAR 的地表形变监测提供了可靠的技术支持。
一、引言
InSAR 技术凭借其全天时、全天候、高空间分辨率等优势,在地表形变监测领域得到广泛应用,如地震形变监测、火山活动监测、城市地面沉降监测等 。然而,大气延迟是影响 InSAR 测量精度的重要因素之一。大气中的水汽、温度、气压等参数的空间分布不均匀,会导致雷达信号传播路径发生变化,从而在 InSAR 干涉图中引入误差相位,严重影响形变测量的准确性 。
在多时相 InSAR 处理中,大气延迟的空间变化特性更为复杂。传统的大气延迟校正方法,如基于经验模型的校正方法、利用气象数据的校正方法等,往往难以准确描述大气延迟在空间上的分层变化特征,校正效果有限 。因此,开展多时相 InSAR 中空间变化分层大气延迟校正联合模型研究,对于提高 InSAR 测量精度、拓展 InSAR 技术的应用范围具有重要意义。
二、大气延迟对 InSAR 测量的影响分析
2.1 大气延迟的产生机制
雷达信号在大气中传播时,由于大气介质的介电常数与真空介电常数存在差异,信号传播速度会发生改变,导致传播路径延迟,即大气延迟 。大气延迟主要由干大气延迟和湿大气延迟两部分组成。干大气延迟主要与大气中的温度、气压和水汽含量有关,其变化相对较为缓慢,可通过标准大气模型进行近似计算 ;湿大气延迟则主要受水汽含量的影响,水汽在空间和时间上的分布具有高度的不均匀性,是导致大气延迟空间变化的主要因素,也是 InSAR 大气延迟校正的重点和难点 。
2.2 大气延迟对 InSAR 相位的影响
InSAR 干涉相位由地形相位、形变相位、噪声相位和大气延迟相位等组成,其中大气延迟相位会干扰真实的地形和形变信息 。大气延迟引起的相位误差可表示为:
三、空间变化分层大气延迟校正联合模型构建
3.1 大气分层理论基础
将大气在垂直方向上划分为若干层,假设每层大气的物理参数(如温度、气压、水汽含量等)在水平方向上均匀分布,在垂直方向上呈阶梯状变化 。这种分层假设能够简化大气延迟的计算,同时又能较好地反映大气在垂直方向上的变化特征 。在每一层中,根据大气状态方程和电磁波传播理论,可以计算出雷达信号在该层中的传播延迟 。
3.2 联合模型架构
联合模型结合大气分层理论与 InSAR 相位信息构建。一方面,利用大气分层理论计算不同高度层的大气延迟先验信息;另一方面,通过分析 InSAR 干涉图中的相位信息,提取与大气延迟相关的相位特征 。模型的输入包括 InSAR 干涉相位数据、雷达系统参数(如波长、入射角等)、气象数据(如探空数据、气象再分析数据等) 。通过优化算法,反演模型中的未知参数,如各层大气的水汽含量、温度偏差等,从而建立大气延迟与 InSAR 相位之间的定量关系,实现对空间变化分层大气延迟的准确校正 。
3.3 模型参数反演方法
采用最小二乘法作为模型参数反演的基本方法。以 InSAR 干涉相位与基于联合模型计算得到的大气延迟相位之差的平方和最小为目标函数,建立优化问题:
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇