✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在人工智能算法不断创新发展的当下,如何提升模型的性能与优化多目标问题成为研究热点。BP(Back Propagation)神经网络作为经典的深度学习模型,在诸多领域广泛应用,但存在易陷入局部最优等问题。冠豪猪优化算法(CPO)和多目标粒子群算法(MOPSO)为改进 BP 神经网络与解决多目标问题带来了新方向。本文将深入探讨 CPO-BP+MOPSO 的原理、应用与优势。
核心算法原理
BP 神经网络
BP 神经网络是一种按误差反向传播算法训练的多层前馈网络,由输入层、隐藏层和输出层组成。其工作原理基于信号正向传播与误差反向传播。在正向传播中,输入数据从输入层经隐藏层逐层处理,最终在输出层产生预测结果;误差反向传播时,将输出结果与实际值的误差,按照梯度下降的方式,从输出层反向传播至输入层,不断调整各层神经元之间的连接权值和阈值,以降低误差,提高模型的预测准确性。然而,BP 神经网络依赖初始权值和阈值的设置,容易陷入局部最优,导致模型泛化能力不佳 。
冠豪猪优化算法(CPO)
冠豪猪优化算法是一种新兴的元启发式优化算法,灵感来源于冠豪猪的觅食和防御行为。在觅食过程中,冠豪猪会在搜索空间中不断探索,寻找食物资源;面对威胁时,会通过群体协作调整位置以保障安全。算法模拟这一过程,通过初始化种群、更新个体位置、评估适应度等步骤,在解空间中进行全局搜索和局部开发,能够有效避免陷入局部最优,快速找到全局最优解或近似全局最优解,为优化 BP 神经网络的初始参数提供了有力工具。
多目标粒子群算法(MOPSO)
多目标粒子群算法是在粒子群优化算法(PSO)基础上发展而来,用于解决多目标优化问题。PSO 模拟鸟群觅食行为,每个粒子代表问题的一个潜在解,粒子在解空间中通过跟踪个体最优解和群体最优解来更新自身位置。MOPSO 引入了非支配排序、拥挤度计算等机制,能够在复杂的多目标解空间中搜索到一组 Pareto 最优解,这些解之间互不支配,共同构成 Pareto 前沿,为决策者提供多种权衡选择,适用于求解如资源分配、路径规划等多目标优化问题。
CPO 优化 BP 神经网络
将 CPO 应用于 BP 神经网络,旨在优化其初始权值和阈值。具体流程如下:首先,将 BP 神经网络的初始权值和阈值编码为 CPO 算法中的粒子,每个粒子对应一组 BP 神经网络的参数;然后,设定适应度函数,通常以 BP 神经网络在训练集上的预测误差(如均方误差 MSE)作为适应度值,误差越小,适应度越高;接着,CPO 算法通过迭代更新粒子位置,不断搜索更优的 BP 神经网络参数;最后,当满足停止条件(如达到最大迭代次数、适应度值收敛)时,将优化得到的参数赋值给 BP 神经网络,作为其初始参数进行训练,从而提高 BP 神经网络的性能和稳定性,减少陷入局部最优的风险。
CPO-BP 与 MOPSO 结合应用
在实际应用中,许多问题都涉及多个相互冲突的目标,如在工业生产调度中,既要最大化生产效率,又要最小化生产成本和能耗。将经过 CPO 优化的 BP 神经网络与 MOPSO 相结合,可以充分发挥两者的优势。CPO-BP 能够对问题中的复杂关系进行建模和预测,例如预测生产过程中的各项指标;MOPSO 则以 BP 神经网络的预测结果为基础,在多目标空间中进行搜索,找到满足多个目标的 Pareto 最优解集。
在算法实现过程中,将 BP 神经网络的输出作为 MOPSO 的输入参数之一,MOPSO 根据多个目标函数对粒子进行评估和更新。例如,在生产调度问题中,BP 神经网络预测不同生产方案下的生产效率、成本和能耗等指标,MOPSO 以这些指标为目标,通过非支配排序和拥挤度计算,不断优化粒子位置,最终得到一系列在不同目标间权衡的生产方案,供决策者根据实际需求选择。
实验与结果分析
实验设计
为验证 CPO-BP+MOPSO 的有效性,选取经典的多目标优化测试函数(如 ZDT 系列函数)和实际应用案例(如物流配送路径规划,目标为最小化配送时间和配送成本)进行实验。对比算法选择传统的 BP 神经网络 + MOPSO(未用 CPO 优化 BP 神经网络)、标准 MOPSO 算法。实验中,设置相同的参数和迭代次数,采用 IGD( inverted generational distance,反向世代距离)、HV( hypervolume,超体积)等指标评估算法性能,IGD 值越小表示算法得到的解与真实 Pareto 前沿越接近,HV 值越大表示算法得到的解在目标空间中覆盖的范围越广。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇