🔥 内容介绍
在现代工业生产和复杂系统中,故障的早期、准确识别与诊断对于保障系统安全稳定运行、降低维护成本、避免灾难性后果至关重要。然而,工业系统通常表现出高度的非线性、非平稳性以及复杂耦合特性,传统故障诊断方法往往难以有效应对。近年来,基于数据驱动的智能故障诊断方法,特别是结合了信号处理、特征提取和深度学习技术的混合模型,展现出强大的潜力。本文深入探讨了三种基于经验模态分解增强算法(EEMD)、多尺度排列熵(MPE)、核主成分分析(KPCA)以及长短期记忆网络(LSTM)的组合模型在故障识别与诊断中的应用:EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM 和 EEMD-PE-LSTM。通过对这三种模型的理论基础、结构组成、优势劣势以及在具体故障诊断场景中的潜在应用进行详细分析,旨在为构建更高效、鲁棒的故障诊断系统提供理论支撑和实践指导。研究表明,这些融合模型通过多层次的信号分解、多尺度特征表征、非线性降维以及时序建模能力,能够有效克服传统方法的局限性,为复杂系统的故障诊断开辟新的途径。
关键词:故障诊断;EEMD;多尺度排列熵;核主成分分析;LSTM;特征提取;机器学习
1. 引言
随着工业自动化和智能化水平的不断提高,现代工业系统如高速列车、风力发电机组、航空发动机、电力系统等日益复杂,其运行状态的监测与故障诊断变得尤为关键。故障的发生不仅可能导致生产中断、经济损失,甚至可能威胁人身安全和环境。因此,开发高效、准确、实时的故障诊断方法具有重大的现实意义和学术价值。
传统的故障诊断方法主要依赖于物理模型或专家经验,但由于复杂系统内部机理难以完全建模以及人工经验的局限性,这些方法在应对高度非线性、非平稳以及不确定性故障时往往力不从心。近年来,随着传感器技术、数据采集技术以及计算能力的飞速发展,基于大量运行数据的故障诊断方法逐渐成为主流。这类方法将故障诊断问题转化为模式识别问题,通过从采集的信号(如振动信号、电流信号、温度信号等)中提取故障敏感特征,并利用机器学习算法进行分类或回归,从而实现故障类型的识别和故障程度的诊断。
然而,直接对原始工业信号进行特征提取往往面临挑战。工业信号往往包含大量的噪声、干扰以及非线性、非平稳成分,直接从时域或频域提取特征难以充分捕捉故障的本质信息。因此,需要对原始信号进行有效的预处理和特征工程。信号分解技术,如经验模态分解(EMD)及其改进算法(如EEMD),可以将复杂的非平稳信号分解为一系列相对平稳的固有模态函数(IMF),从而便于后续分析。特征提取方面,熵类特征,如排列熵(PE)及其多尺度扩展(MPE),能够有效衡量信号的复杂性和无序性,对非线性动力系统的状态变化具有敏感性。高维特征空间往往存在冗余和噪声,影响模型的泛化能力,因此需要降维技术,如主成分分析(PCA)或非线性的核主成分分析(KPCA),来提取主要成分并降低维度。
近年来,深度学习技术在模式识别领域取得了巨大成功,其强大的非线性建模能力和自动特征学习能力使其在故障诊断中展现出巨大的潜力。特别是长短期记忆网络(LSTM)作为一种特殊的循环神经网络(RNN),具有处理序列数据的天然优势,能够有效捕捉时间序列中的长期依赖关系,这对于分析具有时序特性的工业运行数据尤为重要。
基于上述考虑,本文将重点研究三种将信号分解、特征提取、降维和深度学习相结合的故障诊断混合模型:EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM 和 EEMD-PE-LSTM。这些模型试图通过整合不同技术的优势,克服单一方法的局限性,构建更高效、鲁棒的故障诊断系统。
2. 理论基础与方法论
本章将详细介绍构建这三种混合模型所依赖的核心理论和方法。
2.1 经验模态分解增强算法 (EEMD)
经验模态分解(EMD)是一种自适应的信号处理方法,能够将非平稳信号分解为一系列具有物理意义的固有模态函数(IMF)和一个残余分量。每个IMF代表了信号在不同时间尺度上的振荡模式。然而,EMD 存在模态混叠问题,即一个IMF可能包含不同尺度的振荡,或同一尺度上的振荡出现在不同的IMF中。
经验模态分解增强算法(EEMD)是 EMD 的一种改进,旨在解决模态混叠问题。EEMD 的核心思想是在原始信号中加入高斯白噪声,然后对加噪后的信号进行多次 EMD 分解,最后对多次分解得到的 IMF 进行平均。由于白噪声在不同频率上是均匀分布的,它可以帮助分离不同尺度的信号成分,通过多次平均,白噪声的影响会被抵消,从而得到更准确、更物理意义明确的 IMF 分量。EEMD 的主要步骤如下:
-
向原始信号 𝑥(𝑡)x(t) 中加入一个幅值相对较小的白噪声 𝑤𝑖(𝑡)wi(t),得到新的信号 𝑥𝑖(𝑡)=𝑥(𝑡)+𝑤𝑖(𝑡)xi(t)=x(t)+wi(t)。
-
对 𝑥𝑖(𝑡)xi(t) 进行 EMD 分解,得到一系列 IMF 分量 𝐼𝑀𝐹𝑖,𝑗(𝑡)IMFi,j(t) 和一个残余分量 𝑟𝑖(𝑡)ri(t),其中 𝑗j 表示 IMF 的序号。
-
重复步骤1和2 𝑁N 次,每次加入不同的高斯白噪声序列。
-
对 𝑁N 次分解得到的每个 IMF 分量进行平均,得到最终的 IMF 分量:𝐼𝑀𝐹𝑗(𝑡)=1𝑁∑𝑖=1𝑁𝐼𝑀𝐹𝑖,𝑗(𝑡)IMFj(t)=N1∑i=1NIMFi,j(t)。最终的残余分量为 𝑟(𝑡)=1𝑁∑𝑖=1𝑁𝑟𝑖(𝑡)r(t)=N1∑i=1Nri(t)。
通过 EEMD 分解,原始信号可以表示为:𝑥(𝑡)=∑𝑗=1𝑀𝐼𝑀𝐹𝑗(𝑡)+𝑟(𝑡)x(t)=∑j=1MIMFj(t)+r(t)。这些 IMF 分量可以作为后续特征提取的基础。
2.2 排列熵 (PE) 与多尺度排列熵 (MPE)
排列熵(PE)是一种衡量时间序列复杂度的新方法,它基于对时间序列的重构相空间进行排序,计算不同排序模式(排列模式)出现的概率,并利用香农熵来量化其复杂度。PE 对噪声鲁棒,计算速度快,且能有效反映时间序列的动态变化。PE 的计算步骤如下:
-
对给定的时间序列 {𝑥(𝑖),𝑖=1,2,…,𝐿}{x(i),i=1,2,…,L} 进行相空间重构,得到一系列 𝑚m 维重构向量 𝑋𝑗=[𝑥(𝑗),𝑥(𝑗+𝜏),…,𝑥(𝑗+(𝑚−1)𝜏)]Xj=[x(j),x(j+τ),…,x(j+(m−1)τ)],其中 𝑗=1,2,…,𝐿−(𝑚−1)𝜏j=1,2,…,L−(m−1)τ, 𝑚m 为嵌入维数,𝜏τ 为延迟时间。
-
对每个重构向量 𝑋𝑗Xj 中的元素进行升序排列,得到一组新的索引 (𝑗1,𝑗2,…,𝑗𝑚)(j1,j2,…,jm),使得 𝑥(𝑗+𝑗1𝜏)≤𝑥(𝑗+𝑗2𝜏)≤⋯≤𝑥(𝑗+𝑗𝑚𝜏)x(j+j1τ)≤x(j+j2τ)≤⋯≤x(j+jmτ)。不同的索引排列对应于不同的排列模式 𝜋𝑘πk。
-
统计每种排列模式 𝜋𝑘πk 在所有重构向量中出现的次数,计算其概率 𝑃(𝜋𝑘)P(πk)。
-
计算排列熵:𝑃𝐸=−∑𝑘=1𝑚!𝑃(𝜋𝑘)log2𝑃(𝜋𝑘)PE=−∑k=1m!P(πk)log2P(πk)。通常将 PE 归一化到 [0,1][0,1] 范围内:𝑃𝐸𝑛𝑜𝑟𝑚=𝑃𝐸/log2(𝑚!)PEnorm=PE/log2(m!)。
多尺度排列熵(MPE)是 PE 在多尺度分析上的扩展,旨在捕捉时间序列在不同时间尺度上的复杂度信息。MPE 通过对原始时间序列进行粗粒化处理,生成一系列不同尺度的粗粒化时间序列,然后计算每个粗粒化时间序列的 PE。MPE 的计算步骤如下:
-
对原始时间序列 {𝑥(𝑖),𝑖=1,2,…,𝐿}{x(i),i=1,2,…,L} 进行尺度因子为 𝑠s 的粗粒化处理,生成粗粒化时间序列 {𝑦(𝑠)(𝑗),𝑗=1,2,…,[𝐿/𝑠]}{y(s)(j),j=1,2,…,[L/s]},其中 𝑦(𝑠)(𝑗)=1𝑠∑𝑖=(𝑗−1)𝑠+1𝑗𝑠𝑥(𝑖)y(s)(j)=s1∑i=(j−1)s+1jsx(i)。
-
对每个粗粒化时间序列 {𝑦(𝑠)(𝑗)}{y(s)(j)} 计算其 PE。
-
对于给定的最大尺度因子 𝑆𝑚𝑎𝑥Smax,可以得到一个 MPE 向量 [𝑃𝐸(1),𝑃𝐸(2),…,𝑃𝐸(𝑆𝑚𝑎𝑥)][PE(1),PE(2),…,PE(Smax)], 其中 𝑃𝐸(𝑠)PE(s) 表示尺度因子为 𝑠s 时的排列熵。
MPE 能够提供比单一尺度 PE 更丰富的故障特征信息,因为它反映了信号在不同时间尺度上的复杂性变化。
2.3 核主成分分析 (KPCA)
主成分分析(PCA)是一种常用的线性降维技术,通过线性变换将原始数据投影到方差最大的几个方向上,从而保留数据的主要信息并降低维度。然而,对于具有非线性结构的数据,PCA 可能无法有效捕捉其内在的非线性关系。
核主成分分析(KPCA)是 PCA 的一种非线性扩展。KPCA 的核心思想是将数据通过一个非线性映射 ΦΦ 映射到一个高维特征空间,然后在这个高维特征空间中进行线性 PCA。由于直接在高维特征空间进行计算可能非常复杂,KPCA 利用核函数 𝐾(𝑥𝑖,𝑥𝑗)=Φ(𝑥𝑖)𝑇Φ(𝑥𝑗)K(xi,xj)=Φ(xi)TΦ(xj) 来避免显式地进行非线性映射,从而在高维空间进行内积计算。常用的核函数包括高斯核函数、多项式核函数等。
通过 KPCA,可以将高维的 MPE 特征向量映射到低维的特征空间,去除冗余信息和噪声,提取对故障敏感的非线性特征。
2.4 长短期记忆网络 (LSTM)
长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列数据时存在的梯度消失和梯度爆炸问题。LSTM 通过引入门控机制(输入门、遗忘门、输出门)和细胞状态来控制信息的流动和记忆,使其能够有效地学习和记忆时间序列中的长期依赖关系。
LSTM 的核心组成部分是细胞状态,它像一条传送带贯穿整个序列,可以携带历史信息。门控机制则控制着信息如何添加到细胞状态以及如何从细胞状态中读取信息。
- 遗忘门 (Forget Gate)
:决定从细胞状态中丢弃哪些信息。
- 输入门 (Input Gate)
:决定将哪些新信息存入细胞状态。包括一个 sigmoid 层决定更新哪些值,以及一个 tanh 层创建新的候选值向量。
- 输出门 (Output Gate)
:决定输出哪些值。基于细胞状态和一个 sigmoid 层来决定输出的哪些部分。
由于工业系统运行状态具有时序演变的特性,LSTM 能够有效捕捉这种时间依赖性,从而提高故障诊断的准确性。
3. 混合模型构建与分析
本章将详细介绍 EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM 和 EEMD-PE-LSTM 这三种混合模型的结构组成、工作流程以及各自的优势和侧重点。
3.1 EEMD-MPE-KPCA-LSTM 模型
EEMD-MPE-KPCA-LSTM 模型是一种集成了信号分解、多尺度特征提取、非线性降维和深度时序建模的复杂故障诊断模型。其工作流程如下:
- 信号分解:
对采集到的原始振动或电流等工业信号进行 EEMD 分解,得到一系列 IMF 分量。通常选择能量较高或与故障信息相关的几个 IMF 分量进行后续分析。
- 多尺度特征提取:
对选定的 IMF 分量分别计算其多尺度排列熵(MPE)。对于每个 IMF,得到一个 MPE 向量 [𝑃𝐸(1),𝑃𝐸(2),…,𝑃𝐸(𝑆𝑚𝑎𝑥)][PE(1),PE(2),…,PE(Smax)]. 如果选取了 𝐾K 个 IMF,则得到一个 𝐾×𝑆𝑚𝑎𝑥K×Smax 维度的 MPE 特征矩阵。
- 非线性降维:
将所有 IMF 的 MPE 特征向量拼接起来,形成一个高维的特征向量。然后使用 KPCA 对这个高维特征向量进行降维,提取主要的非线性特征成分。选择合适的核函数和主成分个数是关键。
- 故障分类/诊断:
将 KPCA 降维后的特征向量作为输入序列,送入 LSTM 网络进行训练。LSTM 网络学习不同故障状态下特征向量的时序模式,并通过输出层进行故障类型的分类或故障程度的回归。
EEMD-MPE-KPCA-LSTM 的优势与侧重:
- 多层次特征提取:
EEMD 从时频域分解信号,MPE 从多尺度捕捉复杂度,KPCA 从非线性角度提取主成分,实现了多层次、多角度的特征提取。
- 非线性处理能力:
EEMD 本身是非线性的信号处理方法,MPE 能够捕捉非线性系统的复杂度,KPCA 能够进行非线性降维,LSTM 具有强大的非线性建模能力,整个模型对非线性系统具有较好的适应性。
- 时序建模能力:
LSTM 能够有效处理时序数据,捕捉故障状态的动态演变过程,这对于诊断随时间变化的故障尤为重要。
- 降维与去噪:
KPCA 可以降低特征空间的维度,减少冗余信息,并在一定程度上抑制噪声。
潜在挑战:
- 计算复杂度高:
EEMD 需要多次重复 EMD 过程,MPE 需要计算多个尺度的 PE,KPCA 需要进行核矩阵计算和特征分解,LSTM 的训练过程也相对耗时。整个模型的计算负担较重。
- 参数调优复杂:
EEMD 的参数(如噪声幅值、重复次数),MPE 的参数(如嵌入维数、延迟时间、最大尺度),KPCA 的参数(如核函数类型、核参数、主成分个数),以及 LSTM 的网络结构和训练参数都需要仔细调优,这需要大量的实验和经验。
3.2 EEMD-MPE-LSTM 模型
EEMD-MPE-LSTM 模型是 EEMD-MPE-KPCA-LSTM 的简化版本,去除了 KPCA 降维步骤。其工作流程如下:
- 信号分解:
对原始信号进行 EEMD 分解,选择合适的 IMF 分量。
- 多尺度特征提取:
对选定的 IMF 分量计算 MPE,得到一个高维的 MPE 特征向量。
- 故障分类/诊断:
将高维的 MPE 特征向量作为输入序列,送入 LSTM 网络进行训练和诊断。
EEMD-MPE-LSTM 的优势与侧重:
- 相对计算效率更高:
相较于包含 KPCA 的模型,EEMD-MPE-LSTM 的计算复杂度有所降低。
- 保留更多特征信息:
由于没有进行降维,MPE 提取的所有多尺度特征都直接用于 LSTM 训练,可能保留更多细微的特征信息,但同时也可能包含更多冗余和噪声。
- 参数调优相对简化:
相比于 EEMD-MPE-KPCA-LSTM,需要调优的参数数量有所减少。
潜在挑战:
- 特征冗余和噪声敏感:
如果 MPE 特征向量维度较高且包含较多冗余或噪声,可能会影响 LSTM 模型的性能和泛化能力。
- 维度灾难风险:
如果 IMF 数量和最大尺度因子选择较大,MPE 特征向量维度可能非常高,增加 LSTM 训练的难度和计算量,并可能导致维度灾难。
3.3 EEMD-PE-LSTM 模型
EEMD-PE-LSTM 模型进一步简化了特征提取步骤,使用了单一尺度的排列熵(PE)作为特征。其工作流程如下:
- 信号分解:
对原始信号进行 EEMD 分解,选择合适的 IMF 分量。
- 单一尺度特征提取:
对选定的 IMF 分量分别计算其单一尺度的排列熵(PE)。如果选取了 𝐾K 个 IMF,则得到一个 𝐾K 维的 PE 特征向量。
- 故障分类/诊断:
将 PE 特征向量作为输入序列,送入 LSTM 网络进行训练和诊断。
EEMD-PE-LSTM 的优势与侧重:
- 计算效率最高:
这是三种模型中计算复杂度最低的。PE 的计算比 MPE 快,且没有 KPCA 降维的计算开销。
- 模型相对简单:
结构相对简单,易于理解和实现。
- 参数调优最简单:
需要调优的参数数量最少。
潜在挑战:
- 特征信息不足:
单一尺度的 PE 只能反映信号在特定尺度下的复杂度,可能无法全面捕捉不同故障状态在多尺度上的差异,导致特征区分能力不足。
- 对噪声和非平稳性鲁棒性相对较弱:
尽管 PE 对噪声有一定鲁棒性,但单一尺度特征对复杂信号的鲁棒性可能不如多尺度特征和降维后的特征。
4. 应用场景与实验验证思路
这三种混合模型可以应用于多种复杂系统的故障诊断,例如:
- 旋转机械故障诊断:
利用电机、齿轮箱、轴承等关键部件的振动信号,通过模型识别轴承磨损、齿轮断裂、转子不平衡等故障类型。
- 电力设备故障诊断:
利用变压器、开关设备等的局部放电、温度、电流等信号,诊断绝缘故障、过热等问题。
- 航空航天系统故障诊断:
利用发动机、控制系统等关键部件的传感器数据,诊断传感器故障、执行器故障等。
为了验证这三种模型的有效性,可以设计以下实验思路:
- 数据采集:
收集正常运行状态和不同故障类型下的工业系统传感器数据。数据应具有代表性,并尽可能包含不同故障程度和运行工况下的数据。
- 数据预处理:
对采集的数据进行清洗、去噪等预处理操作。
- 模型构建:
按照章节3所述,分别构建 EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM 和 EEMD-PE-LSTM 模型。
- 参数调优:
使用交叉验证等方法,对各模型的参数进行优化,例如 EEMD 参数、MPE 参数、KPCA 参数(核函数、主成分个数)以及 LSTM 网络结构(层数、神经元个数、学习率等)。
- 模型训练:
将处理后的数据划分为训练集、验证集和测试集,在训练集上训练模型。
- 模型评估:
在测试集上评估模型的性能,采用准确率、精确率、召回率、F1 值、混淆矩阵等指标来衡量故障识别和诊断的准确性和鲁棒性。可以对比不同模型的性能差异。
- 对比分析:
与传统的故障诊断方法(如 FFT 特征+SVM、单一 PE+LSTM 等)进行对比,分析混合模型的优势。
通过实验验证,可以定量评估不同模型的性能,并根据具体应用场景选择最适合的模型。例如,对于计算资源受限但对诊断速度要求不高的场景,EEMD-PE-LSTM 可能更适合;对于需要更高诊断精度且计算资源允许的场景,EEMD-MPE-KPCA-LSTM 可能表现更优。
5. 讨论与展望
本文探讨了 EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM 和 EEMD-PE-LSTM 三种基于 EEMD、MPE/PE、KPCA 和 LSTM 的混合模型在故障识别与诊断中的应用潜力。这些模型通过结合信号分解、多尺度/单一尺度特征提取、非线性降维和深度时序建模等技术,旨在克服传统方法的不足,提高复杂系统故障诊断的准确性和鲁棒性。
优势总结:
- 融合多种技术优势:
有效结合了 EEMD 的自适应分解能力、MPE/PE 的复杂度度量能力、KPCA 的非线性降维能力和 LSTM 的时序建模能力。
- 适用于非线性非平稳信号:
能够较好地处理工业系统中常见的非线性、非平稳信号。
- 捕捉时序信息:
LSTM 的应用使得模型能够学习和利用故障状态的时序演变信息。
挑战与未来研究方向:
- 计算效率:
特别是 EEMD-MPE-KPCA-LSTM,计算量较大,需要进一步研究提高计算效率的方法,例如采用并行计算、优化算法等。
- 参数选择与调优:
模型涉及的参数众多,如何高效、自动化地选择最优参数是未来的重要研究方向,可以考虑使用优化算法(如遗传算法、粒子群算法)或基于深度学习的自动调参方法。
- 可解释性:
深度学习模型的“黑箱”特性使得其诊断过程的可解释性较差,未来的研究可以探索如何提高模型的透明度,例如通过特征重要性分析、注意力机制等方法。
- 小样本学习:
在实际工业场景中,故障样本往往较少,如何利用迁移学习、小样本学习等技术提高模型在小样本情况下的诊断性能是一个挑战。
- 实时性:
对于需要实时或准实时诊断的场景,需要进一步优化模型的计算速度,使其能够满足实时应用的需求。
- 鲁棒性:
工业现场环境复杂,信号可能受到各种干扰和噪声的影响,需要研究如何提高模型的鲁棒性,使其在恶劣环境下仍能保持较高的诊断精度。
- 多源信息融合:
实际故障诊断中可以获取多种类型的传感器数据,未来的研究可以探索如何将这些多源异构数据有效地融合到模型中,进一步提高诊断性能。例如,将振动、电流、温度、声音等信号进行融合分析。
- 不确定性量化:
对于重要的工业系统,不仅需要诊断故障类型,还需要评估诊断结果的可信度。未来的研究可以探索如何对故障诊断结果的不确定性进行量化。
6. 结论
本文对 EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM 和 EEMD-PE-LSTM 这三种基于 EEMD、MPE/PE、KPCA 和 LSTM 的混合故障诊断模型进行了深入分析。这些模型通过有机结合信号处理、特征工程和深度学习技术,为处理复杂工业系统的故障诊断问题提供了新的思路。每种模型都有其独特的优势和适用场景。EEMD-MPE-KPCA-LSTM 具有最强的特征提取和非线性处理能力,适用于对精度要求较高的复杂系统;EEMD-MPE-LSTM 在计算效率和特征信息保留之间取得了平衡;EEMD-PE-LSTM 则在计算效率方面具有优势,适用于对速度有较高要求的场景。未来的研究应致力于解决模型的计算效率、参数优化、可解释性、小样本学习和鲁棒性等问题,并探索多源信息融合和不确定性量化等方向,以进一步提升智能故障诊断技术的实用性和可靠性,为保障工业系统的安全稳定运行做出贡献。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇