基于SVM-Adaboost的自行车租赁数量预测研究附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

针对城市共享单车租赁数量预测问题,提出一种基于支持向量机 (SVM) 与自适应增强算法 (Adaboost) 相结合的预测模型。通过集成多个 SVM 弱学习器,SVM-Adaboost 模型能够有效捕捉自行车租赁数据中的非线性特征和时序规律。实验结果表明,该模型在均方误差 (MSE)、平均绝对误差 (MAE) 和平均绝对百分比误差 (MAPE) 等指标上显著优于传统 SVM、决策树和神经网络模型,能够为共享单车调度和城市交通规划提供更准确的预测支持。

关键词

SVM-Adaboost;自行车租赁预测;集成学习;支持向量机;自适应增强算法

一、引言

共享单车作为城市绿色交通的重要组成部分,其租赁数量的准确预测对车辆调度、资源分配和城市交通规划具有重要意义。然而,自行车租赁需求受天气、时间、节假日等多种因素影响,呈现出复杂的非线性变化特征。传统的时间序列分析方法难以有效处理这种非线性关系,而单一的机器学习模型如支持向量机 (SVM) 在处理高维、小样本数据时容易出现过拟合问题。

Adaboost 算法通过迭代训练多个弱学习器并将其组合成强学习器的方式,能够显著提高模型的泛化能力和预测精度。将 SVM 作为 Adaboost 框架下的弱学习器,既能发挥 SVM 在小样本、高维数据上的优势,又能通过集成学习进一步提升模型性能。本文提出基于 SVM-Adaboost 的自行车租赁数量预测模型,并通过实验验证其有效性。

二、理论基础

图片

图片

三、SVM-Adaboost 模型构建

3.1 模型框架

SVM-Adaboost 模型将 SVM 作为 Adaboost 框架下的弱学习器,通过迭代训练多个 SVM 模型并加权组合,形成最终的强学习器。与传统 Adaboost 不同的是,SVM-Adaboost 利用 SVM 的回归能力处理连续值预测问题,同时通过 Adaboost 的迭代机制提高模型对复杂非线性关系的拟合能力。

图片

四、结论与展望

本文提出了一种基于 SVM-Adaboost 的自行车租赁数量预测模型,通过将 SVM 作为 Adaboost 框架下的弱学习器,有效提高了模型对非线性数据的拟合能力和预测精度。实验结果表明,SVM-Adaboost 模型在自行车租赁数量预测任务中显著优于传统机器学习模型。未来研究可以进一步探索以下方向:

  1. 引入更多特征,如地理位置、交通流量等

  2. 优化 SVM 参数选择策略,提高模型训练效率

  3. 探索在线学习机制,适应数据分布的动态变化

  4. 开发可视化预测系统,为实际决策提供支持

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 张杰,孙曰瑶.基于AdaBoost组合算法的衍生金融工具风险预测[J].统计与决策, 2012(7):4.DOI:CNKI:SUN:TJJC.0.2012-07-012.

[2] 常成成.基于AdaBoost-SVM的软件缺陷优先级预测模型的研究[D].南京邮电大学[2025-06-07].DOI:CNKI:CDMD:2.1013.167975.

[3] 刘卫华.MK-LSSVM与AdaBoost-SVM在分类中的比较和研究[J].自动化仪表, 2013, 34(5):4.DOI:10.3969/j.issn.1000-0380.2013.05.004.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值