【风电功率预测】【多变量输入单步预测】基于CNN-BiGRU的风电功率预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在全球能源结构加速向清洁化转型的当下,风电作为重要的可再生能源,其装机容量不断攀升。然而,风电功率受风速、风向、气温等多种因素干扰,呈现出强烈的随机性与波动性,给电力系统稳定运行和调度带来巨大挑战。精确的风电功率预测是实现电力资源优化配置的关键。本文提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)相结合的 CNN - BiGRU 模型,用于风电功率的多变量输入单步预测。该模型利用 CNN 自动提取多变量数据的局部特征,BiGRU 挖掘数据的双向时序依赖关系,从而实现高精度的风电功率预测。通过实际风电场数据实验,验证了该模型在预测精度上优于传统模型和单一网络模型,为风电功率预测提供了新的有效方法。

关键词

风电功率预测;多变量输入;单步预测;CNN;BiGRU

一、引言

随着全球对清洁能源需求的日益增长,风电在能源结构中的地位愈发重要。但风电功率的不稳定特性,使得电力系统在发电计划安排、电网调度以及电力供需平衡等方面面临诸多难题。准确的风电功率预测能够帮助电网合理安排发电资源,降低运行成本,提高电力系统的可靠性和稳定性,因此成为学术界和工业界的研究热点 。

现有的风电功率预测方法涵盖物理方法、统计方法和人工智能方法。物理方法依赖精确的风机模型与气象参数,计算复杂且适应性欠佳;统计方法在处理非线性、非平稳的风电数据时效果有限;传统人工智能方法虽有一定成效,但存在模型泛化能力弱、难以捕捉复杂特征等问题 。近年来,深度学习在时序数据预测领域成果显著,卷积神经网络(CNN)在特征提取方面表现优异,双向门控循环单元(BiGRU)能有效处理序列数据,二者结合用于风电功率预测具有较大潜力。

二、CNN 与 BiGRU 原理概述

2.1 卷积神经网络(CNN)原理

CNN 主要由卷积层、池化层和全连接层构成。卷积层通过卷积核在输入数据上滑动卷积,提取数据局部特征,不同卷积核可捕捉不同尺度和类型特征,多层卷积能提取更复杂的深层次特征。池化层一般紧随卷积层,通过最大池化或平均池化操作对特征图降维,减少数据量与计算复杂度,同时保留主要特征,防止模型过拟合。全连接层整合卷积和池化后的特征,经激活函数输出最终预测结果。在风电功率预测中,CNN 可有效提取风速、风向等多变量数据的局部特征与潜在关系 。

2.2 双向门控循环单元(BiGRU)原理

门控循环单元(GRU)是循环神经网络(RNN)的改进版本,通过引入更新门和重置门,有效缓解了传统 RNN 的梯度消失问题,能更好地捕捉时间序列数据的长期依赖关系。双向门控循环单元(BiGRU)由两个方向相反的 GRU 组成,分别从正向和反向处理序列数据,然后将两个方向的输出进行拼接。这种双向处理方式使 BiGRU 能够同时利用过去和未来的信息,更全面地捕捉数据的时序特征,增强对序列数据的建模能力 。

三、基于 CNN - BiGRU 的风电功率预测模型构建

3.1 多变量输入选择

考虑到影响风电功率的多种因素,选取风速、风向、气温、气压、湿度等作为输入变量。其中,风速是影响风电功率的最直接因素,在一定范围内,风速增加会使风电功率上升,但超过额定风速后,风机将采取保护措施限制功率输出;风向影响风机叶片的受力方向和捕获风能的效率;气温、气压和湿度等因素通过改变空气密度,间接影响风机的发电功率 。收集这些变量的历史数据,并与对应的风电功率数据组成多变量输入数据集。

3.2 数据预处理

  1. 数据清洗:采用 3σ 准则对原始数据进行异常值检测,剔除明显偏离正常范围的数据;对于缺失数据,根据数据特点采用线性插值、邻近值填充等方法进行补全,确保数据的完整性 。
  1. 归一化处理:为消除不同变量量纲的影响,采用最小 - 最大归一化方法,将所有输入变量和输出变量(风电功率)映射到 [0, 1] 区间,公式为:

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值