【无人机三维路径规划】基于黑翅鸢算法BKA实现多无人机协同三维路径规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本研究针对多无人机协同执行任务时的三维路径规划问题,引入黑翅鸢算法(BKA)。通过分析多无人机协同三维路径规划的特点与需求,构建包含路径长度、避障约束、协同性等因素的目标函数与约束条件模型。基于 BKA 模拟黑翅鸢觅食、迁徙等行为的寻优机制,设计适用于多无人机三维路径规划的算法流程,实现路径的高效优化。经仿真实验,对比传统算法,验证了基于 BKA 的多无人机协同三维路径规划方法在路径质量、协同效率等方面的优势,为多无人机协同作业提供了新的技术方案。

一、引言

随着无人机技术的飞速发展,多无人机协同作业在军事侦察、应急救援、环境监测、物流配送等领域得到广泛应用 。在三维空间环境中,多无人机协同执行任务时,合理的路径规划能够确保无人机高效、安全地完成任务,避免碰撞,提高协同作业效率。然而,三维空间的复杂性、障碍物分布的随机性以及多无人机之间的协同要求,使得传统路径规划方法难以满足实际需求。

黑翅鸢算法(Black - Winged Kite Algorithm,BKA)是一种新兴的元启发式优化算法,其灵感来源于黑翅鸢在自然界中的觅食、迁徙等行为。该算法通过模拟黑翅鸢搜索猎物、调整飞行策略等过程,在解空间中进行高效搜索,具有良好的全局搜索能力和收敛速度 。将 BKA 应用于多无人机协同三维路径规划,有望为解决该复杂问题提供新的有效途径。

二、黑翅鸢算法原理

黑翅鸢在自然界中通过敏锐的视觉系统搜索地面猎物,在搜索过程中,它们会根据猎物的分布、自身能量状态以及周围环境等因素调整飞行路径和搜索策略 。BKA 模拟这一过程,将优化问题的解空间类比为黑翅鸢的搜索区域,每个黑翅鸢个体代表一个潜在解。

算法主要包含以下几个步骤:

  1. 初始化种群:随机生成一定数量的黑翅鸢个体,每个个体的位置对应问题的一个解,在多无人机路径规划中,可表示为无人机的一条三维路径。
  1. 适应度评估:根据问题的目标函数计算每个黑翅鸢个体的适应度值,适应度值反映该路径方案的优劣程度,如路径长度越短、避障效果越好、协同性越高,适应度值越高。
  1. 搜索策略更新:模拟黑翅鸢的搜索行为,包括局部搜索和全局搜索。局部搜索模拟黑翅鸢在发现猎物附近进行细致搜索的过程,通过对当前解进行小范围调整,寻找更优解;全局搜索模拟黑翅鸢在广阔区域搜索猎物的行为,通过随机调整个体位置,扩大搜索范围,避免陷入局部最优 。
  1. 位置更新:根据搜索策略更新后的结果,更新黑翅鸢个体的位置,生成新的解。
  1. 迭代优化:重复适应度评估、搜索策略更新和位置更新步骤,不断迭代,直至满足终止条件(如达到最大迭代次数或适应度值收敛),输出最优解。

⛳️ 运行结果

图片

图片

图片

图片

📣 部分代码

🔗 参考文献

[1]周建新,侯自川,李忠泽.融合多策略改进的黑翅鸢优化算法[J].电子测量技术, 2024, 47(22):104-110.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

<think>好的,我现在需要回答用户关于鸽子飞行路径规划算法的问题。首先,用户提到了他们之前引用的内容,主要是关于无人机路径规划的不同算法,比如BKA、CO、PSO、PIO等,以及这些算法在集群路径规划中的应用。用户现在想了解鸽子飞行路径规划的相关算法实现。 首先,我需要确定鸽子飞行路径规划无人机路径规划有什么异同。可能鸽子路径规划需要考虑生物行为,比如群体行为、导航机制等,而无人机可能更注重避障、能源效率等。所以需要结合生物启发式算法和传统路径规划方法。 接下来,我需要查找是否有专门模仿鸽子飞行行为的优化算法。比如,粒子群优化(PSO)是模拟鸟群,而优化算法BKA)是模拟猛禽。是否有鸽群优化算法?记得有一种叫做鸽群优化算法(Pigeon-Inspired Optimization, PIO),这可能就是用户提到的引用中的PIO算法。需要确认这一点。 根据用户提供的引用[3]和[4],里面提到了PIO算法用于无人机集群路径规划。所以PIO可能确实是基于鸽子行为设计的。我需要进一步了解PIO的原理,以及它在路径规划中的具体应用方法。 然后,用户可能需要了解PIO的基本原理、实现步骤,以及如何应用于路径规划问题。此外,可能还需要给出一些代码示例,比如MATLAB或Python的实现,但用户之前提供的示例中有Python代码,所以可能更倾向于Python,但引用中提到了MATLAB代码。需要明确用户的需求,但用户这次的问题没有明确语言,所以可能需要给出算法步骤和可能的实现框架。 此外,需要结合已有的引用内容。引用中提到无人机路径规划的成本包括路径成本、威胁成本、高度成本和转角成本,这可能同样适用于鸽子飞行路径规划,但需要考虑鸽子的具体行为,如群体协作、地磁导航等。 现在,我需要组织这些信息,分步骤回答: 1. 鸽子飞行路径规划的特点:可能包括群体智能、地磁导航、视觉地标识别等。 2. 相关算法:PIO算法,可能还有其他生物启发算法如PSO。 3. 算法原理:模拟鸽子的归巢行为,包括地磁感知和地标识别阶段。 4. 实现步骤:分阶段优化,结合全局和局部搜索。 5. 应用实例:比如无人机或机器人路径规划中的实现,结合用户提供的引用中的方法。 6. 代码示例:可能提供PIO的伪代码或Python代码框架。 7. 相关问题:引导用户深入探讨。 需要确保LaTeX格式正确,行内公式用$...$,独立公式用$$...$$。同时引用用户提供的参考文献,如引用[3]和[4]中的PIO算法。 现在检查是否有遗漏点,比如是否还有其他算法,或者鸽子特有的行为需要考虑,比如避免天敌、能量效率等。另外,路径规划中的约束条件,如障碍物、动态环境等,可能需要结合鸽子的导航策略。 最后,生成相关问题,引导用户进一步提问,如算法比较、参数调整、具体应用案例等。</think>### 鸽子飞行路径规划算法实现 鸽子飞行路径规划通常借鉴其自然导航能力(如地磁感知、视觉地标识别和群体协作),相关算法主要基于生物启发式优化方法。以下是关键内容: --- #### 1. **鸽子飞行路径规划的特点** - **群体协作**:鸽群通过跟随领头鸽或共享信息实现高效飞行[^3]。 - **模态导航**:结合地磁感应、太阳方位和视觉地标[^1]。 - **动态避障**:模拟鸽子在飞行中避开障碍物的策略[^2]。 --- #### 2. **相关算法:鸽群优化算法(Pigeon-Inspired Optimization, PIO)** PIO是模拟鸽子归巢行为设计的优化算法,包含两个阶段: 1. **地磁导航阶段(全局搜索)** 鸽子通过地磁感应确定大致方向,算法中使用速度-位置模型更新个体位置: $$v_i(t) = v_i(t-1) \cdot e^{-Rt} + \text{rand} \cdot (x_{\text{best}} - x_i(t-1))$$ $$x_i(t) = x_i(t-1) + v_i(t)$$ 其中$R$为地图因子,$x_{\text{best}}$为当前最优位置。 2. **地标导航阶段(局部搜索)** 接近目标时,鸽子依赖视觉地标,群体中个体数量按比例减少: $$N(t) = \frac{N(t-1)}{2}$$ 剩余个体向中心点$x_{\text{center}}$靠近: $$x_i(t) = x_i(t-1) + \text{rand} \cdot (x_{\text{center}} - x_i(t-1))$$ [^3][^4] --- #### 3. **路径规划实现步骤** 以无人机集群路径规划为例(可类比鸽子群体): 1. **建模环境**:将地图转化为栅格或三维空间模型,标识障碍物和威胁区域[^1]。 2. **定义成本函数**:总成本包括路径长度、威胁规避、高度约束和转向代价[^4]。 3. **应用PIO算法**: - 初始化鸽群位置(即候选路径)。 - 通过两阶段迭代优化路径成本。 4. **输出最优路径**:选择成本最低的路径。 --- #### 4. **代码示例(PIO伪代码)** ```python def pigeon_inspired_optimization(): initialize_pigeons() # 随机生成初始路径 while not converge: # 地磁阶段:全局搜索 for each pigeon in pigeons: update_velocity() # 根据公式更新速度 update_position() # 更新路径节点 # 地标阶段:局部搜索 reduce_pigeons() # 淘汰半数个体 update_center() # 计算剩余个体的中心 adjust_positions() # 向中心靠近 return best_path ``` --- #### 5. **应用场景** - **无人机集群**:协同搜索与救援[^4]。 - **机器人导航**:动态环境下的避障路径生成。 - **物流配送**:优化运输路径以减少能耗。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值